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Ben Mildenhall et al. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Communications of the ACM, 65(1), 99-106, 2021.



0%

SHANDONG UNIVERSITY

(A% 888 R) Al For Everyone

=R Z IR—— 5 R A

FhEg AH kK

HAIH-LAH “FRRER” RAE



NBRBIBAR



