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Introduction —— Transient - Continual Learning

Train once

Deploy once

> E

<

®

Transient Perception

Train continually

Deploy continually

Continual Perception

As shown in the above image, a conventional model can only be trained once and has
fixed capabilities. In contrast, a model with continual learning abilities can
continuously expand its capabilities to meet new requirements.
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Introduction

¥ Ours: USIS-SAM (Cextra prediction J

> Salient Instance Segmentation

60“-:3%) * gég{igg(%gﬁg)m (§IS), an eme.rging and promising

N CRil ROSRCCTE) 3 visual task, aims to segment out

Ne S ® URank+ QTR (TMM'23) visually salient objects in a scene

e RN and distinguish individual salient

R TR WaterVask instances, which is beneficial for

ol o b . 1y vision tasks such as marine

* ' / resource exploration and

" B underwater human-computer
Alg s AP\ Rank+RDPNet Ours Interaction.

» However, directly transferring conventional SIS methods for land images to underwater scenes
may struggle to achieve ideal performance attribute to the domain gap of intrinsic
characteristics and extrinsic circumstances between land and underwater living.



Motivation

» On the one hand, there is no general underwater salient image instance
segmentation dataset to promote training and evaluation of the underwater salient
instance segmentation models.

» On the other hand, even state-of-the-art SIS models trained on large-scale land-
based datasets coupled with the best underwater image enhancement algorithms
cannot achieve satisfactory performance in underwater environments.

® To alleviate this issue, we construct the first large-scale underwater salient instance
segmentation (USIS) dataset, USIS10K, aiming to promote the development of
salient instance segmentation for underwater tasks.

® Simultaneously, we first attempt to apply Segment Anything Model (SAM) to
underwater salient instance segmentation and propose USIS-SAM, aiming to
improve the segmentation accuracy in complex underwater scenes.



Contributions

a)

b)

We construct the first large-scale dataset, USIS10K, for the underwater salient
instance segmentation task, which contains 10,632 images and pixel-level
annotations of 7 categories. As far as we know, this is the largest salient instance
segmentation dataset, and includes Class-Agnostic and Multi-Class labels
simultaneously.

We propose the first underwater salient instance segmentation model, USIS-SAM,
as far as we know. In USIS-SAM, we design Underwater Adaptive ViT Encoder to
incorporate underwater visual prompts into network via adapters, and Salient
Feature Prompter Generator to automatically generate salient prompters, guiding
an end-to-end segmentation network.

Extensive public evaluation criteria and large numbers of experiments verify the
effectiveness of our USIS10K dataset and USIS-SAM.



USIS10K Dataset

Dataset Year Task Label Number Max
ILSO 2017 SIS X 2,000 8
SOC 2018 SIS v 3,000 8

SISIOK | 2023 SIS X 10,301 9

USIS10K | 2024 USIS v 10,632 9




Dataset Statistic and Challenges
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» Challenge in the number of instance.
In USIS10K dataset, multiple salient instances may exist in a single image. There are 1731 images with more than 3
salient instances in our dataset, accounting for 16.3% of the total.

> Challenges in small or large instances.
In USIS10K dataset, the average size of the salient instances is 34,336 pixels (approximately 185X185 pixels),
which averaged 10.3% of the image size. There are 3053 salient instances smaller than 1% of the image area,
(16.0% of the total), while there are 1733 instances larger than 30% of the image area, (9.1% of the total).

» Challenges in channel intensity of underwater images.
Optical images inevitably suffer from color attenuation due to the selective absorption of water at different
wavelengths. This poses an additional challenge for the network to properly understand and handle the image

color distortion caused by this attenuation 10



Dataset Statistic and Challenges

8000
> Location of Salient Objects (Less central bias).

In the SIS10k dataset, approximately 13.5% of the
locations have fewer than 1000 instances and 32%
have fewer than 2,000 instances, while in our dataset,
only 2.75% of the locations have fewer than 1,000
instances and 22.5% have fewer than 2,000 instances.
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USIS-SAM
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Figure 1. (a) USIS-SAM framework. The USIS-SAM framework modifies the SAM by adding the Underwater
Adaptive ViT Encoder and the Salient Feature Prompt Generator. (b) The structure of UA-VIT. In the figure,
SFFM stands for Salient Feature Fusion Module, CA stands for Channel Adapter.



Underwater Adaptive ViT Encoder

In USIS-SAM, we design the Underwater Adaptive ViT (UA-VIT) to
integrate underwater visual prompts into the network via
adapter and channel adapter. UA-VIiT enables a more effective

utilization of the SAM image encoder in underwater scenarios.

Adapter :
P = MLPyy; (U(MLPprompt(F)))f

adapter layer. o is the activation function.

where F is the input feature, and P is the output prompt for each

~

J

Channel Adapter :
C = FxConvyy(o(Convgygyn (Pool(F)))),

\1><1 convolutional layer, and Pool is an average pooling layer.

where C is the output feature after channel adapter, Conv is a
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Salient Feature Prompt Generator
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Figure 2. The structure of Salient Feature Prompt Generator

(SFPG). The SFPG module efficiently filters out non-salient noise, =~ Ffgure 3. Visualize features generated by
allowing for robust feature aggregation of salient instances. the Salient Feature Prompt Generator.

The USIS task needs the model to automatically recognize and segment each salient object in underwater
images. However, SAM requires the user to explicitly provide foreground points, boxes, or texts as prompts to
guide the model segmentation. Therefore, we design the Salient Feature Prompt Generator to directly predict
prompts embedding of salient instances, enabling end-to-end performing the USIS task



Experiments

Method Epoch Backbone Class-Agnostic Multi-Class
mAP APs;y APy5 | mAP  AP5;y APr;
S4Net (Fan et al., 2019) 60 ResNet-50 32.8  64.1 27.3 239 435 244
RDPNet (Wu et al., 2021) 50 ResNet-50 53.8 77.8 619 | 379 553 42.7
RDPNet (Wu et al., 2021) 50 ResNet-101 | 54.7  78.3 63.0 | 393 559 454
OQTR (Pei et al., 2023) 120 ResNet-50 56.6 793 62.6 19.7 30.6 219
URank+RDPNet (Wu et al., 2021) 50 ResNet-101 | 52.0  80.7 62.0 | 359 525 41.4
URank+OQTR (Pei et al., 2023) 120 ResNet-50 | 49.3 743 56.2 | 20.8 32.1 23.3
WaterMask (Lian et al., 2023) 36 ResNet-50 58.3 80.2 66.5 377 540 425
WaterMask (Lian et al., 2023) 36 ResNet-101 | 59.0  80.6 672 | 38.7 549 432
SAM+BBox (Kirillov et al., 2023) 24 ViT-H 459 659 52.1 264 389 29.0
SAM+Mask (Kirillov et al., 2023) 24 ViT-H 55.1 80.2 62.8 385 563 44.0
RSPrompter (Chen et al., 2023a) 24 ViT-H 58.2 79.9 65.9 40.2 55.3 44.8
URank+RSPrompter (Chen et al., 2023a) 24 ViT-H 506 744 566 | 38.7 554 436
USIS-SAM 24 ViT-H 59.7 81.6 67.7 | 43.1 59.0 485

Table 1. Quantitative comparisons with state-of-the-arts on the USIS10K datasets. Urank stands for an
underwater image enhancement method in UnderwaterRanker (AAAI 2023 oral), SAM+BBox uses inference
results from Faster RCNN as prompts for prediction, SAM+Mask stands for Mask RCNN networks use SAM
as backbone. The RSPrompter in the table is the RSPrompter-anchor framework.



Experiments

—| |— Class-Agnostic —

[—  Multi-Class

WaterMask

RSPr;)mpter

RDPNet

Figure 4. Qualitative comparison on the USIS10K dataset. Each salient instance is represented by a
unique color, and the segmented mask is superimposed on the image.



Ablation Study

Methods mAP APs AP-s

Full Model 43.1 59.0 48.5
w/o UA-VIT | 415 (-1.6) 57.4(-1.6) 47.0(-1.5)
replace SFPG | 42.2 (-0.9) 583 (-0.7) 47.5(-1.0)

Methods mAP AP5 AP75
OQTR (Pei et al., 2023) 67.2 88.1 81.7
USIS-SAM 70.1 89.0 78.2

Table 2. Effectiveness of each component in
USIS-SAM, replace SFPG means to use Multi-
scale  Feature Enhancer Module in
RSPrompter (TGARS’24) instead of SFPG.

Table 3. Generalization Ability of USIS-SAM.
Quantitative comparisons with state-of-the-
art methods on SIS10K indicate that USIS-
SAM did not overfit our dataset.

Methods mAP APr AP

Methods mAP APs5 AP

Full Model 43.1 59.0 48.5
w/o Adapter | 41.7(-1.4) 573 (-1.7) 47.3(-1.2)
w/o CA 42.0(-1.1) 57.7(-1.3) 47.1(-1.4)

Full Model 43.1 59.0 48.5
w/o SFFM 423 (-0.8) 58.5(-0.5) 47.2(-1.3)
w/o Multi-Conv | 42.5 (-0.6) 58.6 (-0.4) 47.7 (-0.8)

Table 4. Effectiveness of each component in
Underwater Adaptive VIiT Encoder, w/o
Adapter and w/o CA denote the removal of
Adapters and Channel Adapter.

Table 5. Effectiveness of each component in
Salient Feature Prompt Generator, w/o SFFM
and w/o Multi-Conv denote the removal of
the salient feature fusion module and multi-
scale convolution module.



Conclusion and Future Work

» We have constructed the first general underwater salient image instance
segmentation dataset with pixel-level annotations, which enables us to
comprehensively explore the underwater salient instance segmentation task.

> we first attempt to apply Segment Anything (SAM) model to underwater
salient instance segmentation and propose USIS-SAM, aiming to improve the
segmentation accuracy in complex underwater scenes. Extensive experiments
have validated the effectiveness and generalizability of USIS-SAM.

> In future work, we plan to extend the USIS datasets to broader and more

challenging underwater images and underwater videos.
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Problem Definition: Few-Shot Segmentation

Few-Shot Seg
Few-shot learning!!! % Segmentation

Meta-training stage Meta-testing stage

Sampled N classes
I—%\
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. 4 A . |b Y Novel support set S,L H)
Support set (Novel class data X,, )

Base class data X

(Many) !
Base query set Qy conditioned model
Support Mask
Support Image Support Feature I
\ :Maln Purpose !
- - prediction . _ooooEEEE .
Segment the query image under the
Pre-trained - Feature - B\ guidance of the support branch
Query Image Backbone Query Feature Processing '
Network 17 ______________
E % - - - ' Main Challenges ! l
i » U .
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Common network frameworks for FSS[2] 'N appearance, shape, and scale

[1] Chen et al, “A closer look at few-shot classification.” ICLR 2019. [2] Tian et al, “Prior guided feature enrichment network for few-shot segmentation.” TPAMI 2020.



Motivation

support
mask
l support Foreground
sypport — ® [(I;’rototype ] image Proto. Evo.
image eneration _—
Boreground
y | Proto. Evo.
quety” —p » (Cos/Add query
image
v image ~> >
output +
o 4o output
(a) Existing prototype-based methods (b) Our QPENet

Previous FSS methods only use supporting features Therefore, we propose query-guided
to generate prototypes, ignoring the specific needs prototype evolution networks, which
of the query. The large difference between the integrate query features into the

query image and the supporting features can bring generation process of foreground and

negative impact to the final prediction results. background prototypes.



Contributions

» We propose a novel FSS method named QPENet, which embodies the core

idea of using the query image to guide the evolution of prototypes, thereby
enhancing their efficacy for segmenting the specific query image.

» We introduce innovative PPG and DPE modules to facilitate the evolution of
the foreground prototype following a support-query-support process, and a
novel GBC module to eliminate components that might reflect the current
foreground class from the global background prototype.

> Extensive experiments conducted on two widely adopted datasets
demonstrate that our model excels in delivering state-of-the-art performance
in the domain of FSS.

https://github.com/rmcong/QPENet TMM?24

22
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Our QPENet
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Evolution of Foreground Prototype

Foreground prototype evolution

----------------------------------------------------------------------------------------------------------------------------------------------------------------------
. .

ﬁ :C? : |—

/ broadcast v
Py =* |
: Y

: |

Pseudo-prototype Generation Module (PPG)

In order to obtain the specific requirements of y2'¢ = Convs(Concat(Fy, BC(P)))
g ! g )
the query image, the query image is initially

predicted and the predicted foreground part is ren i Fy(i) @ e (i)

PP — MAP(F,, y"¢) =
f a Jf hxw prey -
! ! 2151 yl})g (4)

generated into a pseudo-prototype. The
generated pseudo-prototype serves as a vehicle
for the specific requirements of the query image.



Evolution of Foreground Prototype

Foreground prototype evolution

----------------------------------------------------------------------------------------------------------------------------------------------------------
.

DPE :

broadcast : I
—— — | / y |
F ! ffg : Mmain MIUx :
; . (©—s }

Dual Prototype Evolution Module (DPE)
Y7o’ = Convs(Concat(Fy, BC(PEY))). The pseudo-prototype is used for guided

main e segmentation of the support image. The
M = 1{M, = 1} @ 1{y};" = 1},

segmentation result is compared with the support
M = 1{M, = 1} @ I{y};" # 1}.

mask so that the support foreground is separated
into two parts with different intimacy from the

query image.
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Evolution of Background Prototype

The background semantics of the query image is :
significantly different from that of the support !

image.

D—@d—
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—

-
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j

Initialize a global background prototype, and

: during training, predict the background maps of
: the query and support images to update it.

Ypy = Convs(Concat(Fy, BC’(Pf;Obal))),

|
|
|
| Ypy = C’onvs(Concat(Fq,BC(Pf;Obal))).
|
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: : |
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Experiments
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Experiments

PASCAL-5i dataset

Backbone Methods I-shot >-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU | Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU
CANet [61] 52.5 65.9 51.3 519 55.4 66.2 55.5 67.8 51.9 53.2 57.1 69.6
PPNet [25] 48.6 60.6 55.7 46.4 52.8 - 58.9 68.3 66.8 58.0 63.0 -
RPMMs [24] 55.2 66.9 52.6 50.7 56.3 - 56.3 67.3 54.5 51.0 57.3 -
PFENet [1] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
RePRI [62] 59.8 68.3 62.1 48.5 59.7 - 64.6 71.4 71.1 59.3 66.6 -
ResNet-50 ASGNet [26] 58.8 67.9 56.8 53.7 59.3 69.2 63.7 70.6 64.2 57.4 63.9 74.2
CMN [30] 64.3 70.0 574 59.4 62.8 72.3 65.8 70.4 57.6 60.8 63.7 72.8
SAGNN [31] 64.7 69.6 57.0 57.2 62.1 73.2 64.9 70.0 57.0 59.3 62.8 73.3
CyCTR [63] 65.7 71.0 59.5 59.7 64.0 - 69.3 73.5 63.8 63.5 67.5 -
DPNet [64] 60.7 69.5 62.8 58.0 62.7 - 64.7 70.8 69.0 60.1 66.2 -
DCP [35] 63.8 70.5 61.2 55.7 62.8 75.6 67.2 73.1 66.4 64.5 67.8 79.7
NERTNet [28] 65.4 72.3 59.4 59.8 64.2 77.0 66.2 72.8 61.7 62.2 65.7 78.4
Ours 65.2 71.9 64.1 59.5 65.2 76.7 68.4 74.0 67.4 65.2 68.8 80.0
DAN [65] 54.7 68.6 57.8 51.6 58.2 71.9 57.9 69.0 60.1 54.9 60.5 72.3
PPNet [25] 52.7 62.8 57.4 47.7 55.2 70.9 60.3 70.0 69.4 60.7 65.1 717.5
PFENet [1] 60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5
RePRI [62] 59.6 68.6 62.2 47.2 594 - 66.2 71.4 67.0 57.7 65.6 -
ResNet-101 | ASGNet [26] 59.8 67.4 55.6 54.4 59.3 71.7 64.6 71.3 64.2 57.3 64.4 75.2
CyCTR [63] 69.3 72.7 56.5 58.6 64.3 72.9 73.5 73.2 60.1 66.8 67.0 75.0
NERTNet [28] 65.5 71.8 59.1 58.3 63.7 75.3 67.9 73.2 60.1 66.8 67.0 78.2
Ours 67.0 73.2 63.7 60.1 66.0 77.1 69.8 75.5 66.8 66.3 69.6 81.1
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Experiments

CoCo-20i dataset

Backbone Methods I-shot >-shot
Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU | Fold-0 Fold-1 Fold-2 Fold-3 Mean FB-IoU

PPNet [25] 28.1 30.8 29.7 27.7 29.0 - 39.0 40.8 37.1 37.3 38.5 -

RPMMs [24] 29.5 36.8 28.9 27.0 30.6 - 33.8 42.0 33.0 33.3 35.5 -
ASGNet [26] - - - - 34.6 60.4 - - - - 42.4 67.0

RePRI [62] 31.2 38.1 33.3 33.0 34.0 - 38.5 46.2 40.0 43.6 42.1 -

ResNet-50 CyCTR [63] 38.9 43.0 39.6 390.8 40.3 - 41.1 48.9 45.2 47.0 45.6 -
CMN [30] 37.9 448 38.7 35.6 39.3 61.7 42.0 50.5 41.0 38.9 43.1 63.3

DPNet [64] - - - - 37.2 - - - - - 42.9 -

DCP [35] 40.9 43.8 42.6 38.3 414 - 45.8 49.7 43.7 46.6 46.5 -
NERTNet [28] 36.8 42.6 39.9 37.9 39.3 68.5 38.2 44.1 40.4 384 40.3 69.2
Ours 41.5 473 40.9 394 42.3 67.4 47.3 524 443 44.9 47.2 69.5
DAN [65] - - - - 244 62.3 - - - - 29.6 63.9
PFENet [1] 34.3 33.0 32.3 30.1 324 58.6 38.5 38.6 38.2 34.3 37.4 61.9

ResNet-101 SCL [27] 36.4 38.6 37.5 354 37.0 - 38.4 40.5 41.5 38.7 39.9 -
SAGNN [31] 36.1 41.0 38.2 33.5 37.2 60.9 40.9 48.3 42.6 38.9 42.7 63.4
NERTNet [28] 38.3 404 39.5 38.1 39.1 67.5 42.3 44.4 44.2 41.7 43.2 69.6
Ours 39.8 454 40.5 40.0 41.4 67.8 47.2 54.9 434 45.4 47.7 70.6
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Ablation Study

TABLE IV: Comparison of class mloU(%) and FB-IoU(%)
across different foreground prototypes.

PIT" Pp@™ Pri [ mloU  FB-loU
v 633 746
v 618 720
Vo581 694
VooV | 641 747
v v v | 652 767

TABLE V: Ablation study of activation maps and DPE,
assessed by class mloU (%) and FB-IoU (%).

mloU FB-IoU
w/o activation maps | 61.6 73.0
w SGM 63.5 75.6
Full Model 65.2 76.7

Fig. 5: Qualitative results for component analysis. (a) Annotated support image. (b) Annotated query image. (c) Predictions of
the baseline model. (d) Predictions of the baseline model enhanced by FGPE. (e) Predictions of the baseline model enhanced
by FGPE and BGPE. (f) Predictions of the full model.
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Conclusion

* In this paper, we propose QPENet to optimize prototypes to address the
specific characteristics of the current query image.

e QPENet presents two types of prototypes, namely, foreground and
background prototypes, both of which evolve under the guidance of the
query features.

 Furthermore, we design the FFA module to maximize the utilization of these
prototypes.

* In addition, extensive experiments on PASCAL-5i and COCO-20i datasets
demonstrated the superiority of our proposed model.
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Introduction

Task 1 Task 2 Task n
Trainl m=lp Train s e o o =l Train‘
CL Model CL Model CL Model

» Continual image classification, also known as continual learning (CL), aims to enable
models to learn a number of classification tasks sequentially and predict new tasks(or
categories) that have no overlap with previously learned tasks while maintaining good
performance on previously learned tasks.

» Catastrophic forgetting refers to the problem that a model’s performance on
previously learned tasks significantly drops after learning a new task since no previous
task samples are available in current task training, which is the key challenge that must
be addressed in continual learning models.



Motivation —— ACL method

Private Ciressan . Private
(Task 1) - (Task 1)
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g E Zp :
Input images A . -
& taSk Iabels Private -IIIIIIIIE :lll Private
(Task 3) (Task 3)
. ] Ldiff : Ltask

Ladv
Shared Module ZS ..
. . Discriminator Task Label
(task-invariant)
Saved samples from Task

1,2, ... T-1 and task label
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Adversarial Continual Learning, ECCV 2020



Motivation

ACL task 1 test features

4 e shared features
12.5 1 .
* A‘ A private features
‘ )
10.0- :A
A A
7.51 Al N
A
5.0 A
: =2
M A
2.5 ﬁ \A‘ A
t »
A
0.0 AA
a4
A A

-2.51

» Current feature decomposition methods

generally focus on increasing the distance
between task-invariant and task-variant
features without fully considering their
relationship, which brings about low-
quality decomposition. Moreover, these
methods mainly focus on decomposing
features within an individual task and
ignore the important information
conveyed by the relationships between
features across tasks.

35



Motivation

» Most contrastive learning methods learn

instance feature representations
through instance relation by
constructing learning pairs.

By contrast, we design a comprehensive
contrastive learning strategy under the
feature decoupling framework to
enhance feature representation and
model the relationship between task-
invariant and task-variant features.
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Contributions

a)

b)

We propose an ACCL method for the continual classification task that
effectively explores inner- and cross-task relations by constructing all-
round contrastive learning pairs.

To capture the inner-task relations, we propose the KDC that utilizes
three types of contrast to decompose generalized task-invariant
features and diverse variant features.

Considering the relation between current and previous tasks, we
incorporate replay samples with contrastive constraints to alleviate
the forgetting problem and model the cross-task relations.
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Our ACCL Method https://github.com/rmcong/ACCL TMM24

Knowledge Decomposition Constraint
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Our model comprises task-invariant and task-variant feature extractors, denoted as S and P, respectively,
along with their respective projection heads, SH and PH. Additionally, it incorporates a knowledge

decomposition module (KDC), a discriminator (D), and a classifier (C) specific to the task t. -


https://github.com/rmcong/ACCL%20TMM24

Knowledge Decomposition Constraint

Improving Consistency of Task-Invariant Features.

\ t b
X¢n ( X )
— o
— '.'.o
k‘ 0. ® °
\\ // 00 _ce% @
) LA
O o
® ® o o2 P
(P ®
m ® o
Xsh \ @ o Xsh

an s - S - S S S S S S S ..

Inner-task relation:
Learning pairs constructed by the
task-invariant features (pp):

pp = {(xsh ) Xsp ) (xsh ' Xsh l)}

Cross-task relation:
Learning pairs constructed by the
memory and current task:

pp includes positive pairs
{xsh ’ xsh}
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Knowledge Decomposition Constraint

Well-distributed Task-Variant Features.

Cross-task relation:
Learning pairs constructed by the memory and current task:

vp includes negative pairs {(x55", x4)}

KDC combines vp to form the constraint L,,, which is similar to Lg,,.

r .
! { 1 vp | Inner-task relation:
I . .
: Exf»h Al :A::A . Learning pairs constructed by the
A AA l :
LT A . task-variant features (vp):
1 I L ] _: _:
L xm, /] i ! positive pairs { (x55", x57")},
| . . — . .
| (/2. I negative pairs {(x;hl, xf,fll)}.
I A do > , l
\ I
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Knowledge Decomposition Constraint

Enhancing Discriminability between Invariant and Variant Features.
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Inner-task relation: Cross-task relation:
Learning pairs construct by the task-invariant and Learning pairs constructed by the memory and
task-variant features (np) : current task:
np = {(x5;° ) Xph 9, (x5 xg,f‘)} np includes negative pairs { (xS, xph)}

exp(x;-xps/T)
ae{np,pp} eXp(xi°xa/T)41

As they use the same anchor, KDC combines np and pp to
form the constraint Lg,.

-1
p = ZiEI@ZpSE{pp}Z



Our Method

Knowledge Decomposition Constraint
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L. =Lgp + L, + Ly, where

L, is a regularization term.
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Experiments

Quantitative comparisons with state-of-the-arts on the Quantitative comparisons with state-of-the-arts on the
CIFAR-100 datasets. MinilmageNet datasets.
Methods Structure Memory ACC(%) BWT(%)
EWC (NAS 2017) AN 0 68.80  -0.02 Methods Structure Memory ACC(%) BWT(%)
GSS (NIPS 2019) RNI8 300 49.92 - EWC (NAS 2017) AN 0 52.01 -0.12
A-GEM (ICLR 2019) RRN18 2000 63.98 -0.15 HAT (PMLR 2019) AN 500 5978 -0.03
HAT (PMLR 2019) AN 500 72.06 -0.00
ACL (ECCV 2020) AN 200 7808  -0.00 GSS (NIPS 2019) RNI8 300 38.77 ”
NCCL (NIPS 2021) RRNI1S 50 74.39 i A-GEM (ICLR 2019) RRNI18 500 5124  -0.12
HAL (AAAI 2021) RRN18 200 47.88 - ACL (ECCV 2020) RRNI18 200 62.07 0
GPM (ICLR 2021) AN 0 7248  -0.90 NCCL (NIPS 2021) RRNIS 50 69.49 -
CCL-FP+ (BMVC 2022) RNI18 200 65.19 - GPM (ICLR 2021) RRN18 0 60.41 -0.70
DeepCCG (NIPSW 2022) RRNI18 750 60.46 - )
TRGP (ICLR 2022) AN 0 1446 -0.90 DeepCCG (NIPSW 2022) RRNI8 750 43.04
SGP (AAAI 2023) AN 0 7605  -0.01 TRGP (ICLR 2022) RRNI18 0 61.78 -0.50
ANCL (CVPR 2023) RN32 2000  79.99 ; SGP (AAAT 2023) RRNI8 0 62.83  -0.01
API (CVPR 2023) AN 0 81.40 -0.08 API (CVPR 2023) RRNI18 0 65.90 -0.3
SOI (CVPR 2023) RNI8 1000  74.27  -16.37 SOI (CVPR 2023) RN18 1000 39.61 -16.01
DFGP (ICCV 2023) AN 0 7459 -0.00 DFGP (ICCV 2023) RRNI§ 0 69.92  -0.10
ACCL AN 0 Bt -0.26 ACCL RRNIS 0 7466 051
ACCL AN 200 80.55 0.05
ACCL RRN18 200 8351  0.13 ACCL RRNI8 500  75.68 045
ACCL RRNIS 500 8337  0.69
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Visualization
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Ablation Study

Ao A3 A4
value ACC value ACC value ACC
0.06 75.40 0.001 75.29 0.10 75.51
0.08 75.72 0.003 75.43 0.25 75.88
0.10 75.88 0.005 75.88 0.50 75.68
0.12 75.80 0.007 75.54 0.75 75.70
0.14 75.68 0.009 75.33 1.00 75.67

Hyperparameter finetuning on the MinilmageNet dataset.

# pp vp np r ACC(%) BWT(%)
1 54.60 -0.14
2 v 60.51  -10.29
3 v 5797  -20.52
4 v v 5693  -21.54
5 v v 72.03 -0.21
6 v v v 70.16 -2.84
7 v v v 72.70 -0.11
8 v v v v 75.88 0.12
Ablation study of each component in KDC on
MinilmageNet dataset.
L, Lais Lq ACC(%) BWT(%)
v v 54.60 -0.14
v v 66.69 -0.02
v v 71.38 -0.04
v v v 75.88 0.12

15-5(2 tasks) 15-1(6 tasks) 19-1(2 tasks)
old new all old new all old new all
Baseline 77.10 4883 70.37 7215 2441 60.79 76.62 1043 73.47
Ours 7772 51.55 7149 7702 36.04 6726 7742 4631 7594

Ablation study of each loss term in KDC on MinilmageNet

dataset.

Quantitative comparison of continual semantic segmentation
task with the baseline on the PASCAL VOC 2012 dataset.
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Conclusion

> In this work, we design ACCL for continual classification tasks, integrating
the KDC to investigate the inner-task relations when decoupling task-
invariant and task-variant features. By incorporating an orthogonal
constraint and an adversarial training strategy, our method enables the
effective extraction of well-distributed task-invariant and class-specific
features within a single task.

» Furthermore, we thoroughly investigate cross-task relations between
memory samples and current task samples, which supplement the
inner-task relation, resulting in the effectiveness of preventing
forgetting problems.

» Extensive comparisons and ablation studies validate the superiority and

effectiveness of our proposed method.
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Prototype Derivation and Distribution Rebalance for
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Task Definition

Actual bjects Stap t:4

( {person, background} ]

[ {bike, car}

[ {car, background} ]

[ {bike, person}

Step t +1
{ {bike, background} ]

‘ {person, car} J

» In class-incremental semantic segmentation (CISS), each step focuses on different
classes, with its training set only annotates current classes, while previously learned

classes and future classes are labeled as background.

» The images in each single-step training set contain at least one pixel from current
classes, and images devoid of any current class are excluded. s



Motivation

» There are a lot of false positives for classes in incremental steps (i.e.,
steps beyond the first).

» This is because the proportion of current classes in the single-step
training set is significantly higher than in the complete dataset,

leading to classification bias, which is especially pronounced in
incremental steps with fewer classes.

To address this issue, the key is to augment past classes and background

pixels in the training samples of the incremental steps, thereby reducing
the proportion of the current class. At the same time, it is important to
avoid triggering excessive storage requirements.

49



Solution

Prototype Replay Background Repetition

At each task, the pixel occurrence count| | At each task, the cumulative pixel count
for each class is recorded. In subsequent| |of the background class is updated. In
tasks, pixel-level class prototypes are| |subsequent tasks, background features

replayed based on these occurrence| |are duplicated according to this count.
counts.

These two strategies respectively adjust the proportion of foreground
and background classes within the single-step training samples to match
the proportion in the “cumulative training set up to the current step”,
thus avoiding bias.
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Contributions

» We propose a new CISS method named STAR. Its basic version stores compact
prototypes and necessary statistics for each learned class. This enables a
comprehensive reconstruction of single-task training sample distributions, aligning
them with the complete dataset to mitigate classification bias.

» We develop a prototype derivation method that considers both the recognition and
extraction patterns of the network. This empowers prototype creation without the
need for storage, leading to a lite version.

» The OCFM loss is introduced to retain learned knowledge in a spatially targeted
manner, maintaining old-class features while ensuring flexibility for learning new
classes. Additionally, the SAD loss is designed to enhance the feature

discriminability between similar old-new class pairs, facilitating the classification.
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Our STAR Method https://github.com/jinpeng0528/STAR
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https://github.com/jinpeng0528/STAR

Prototype Replay — Basic Version

* After the learning of each task, all training samples in this task are passed
through the frozen model to compute the features.

* The feature centers are stored as prototypes and replayed in subsequent tasks.

* Since prototypes are highly compact, they require only 1/100 of the storage
compared to existing replay-based methods that storing raw images.

Input Images {xt~7}tZ31 Feature Extractors Features {f t“’}i;ﬁ
{Wor-o}i=1

Prototypes
{}iepre1
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Prototype Replay — Lite Version

By leveraging the network’s classification recognition and feature extraction patterns,
prototypes are derived without the need for any storage.

Recognition Patterns

The classifier is isolated from the network.
Then, it is used to infer representative
features of previous classes, forming the
recognition-side prototype.

Extraction Patterns

Images from the current task are fed into
the network, and features from regions
predicted as belonging to previous classes
are aggregated to construct the
extraction-side prototypes.

A Classifier ©t-1

Random vectors
{1

I

Input Images x*

Feature Extractor
lp 2] t-1

Features f4t~1

Recognition-side prototypes
{}ep e

Prototypes
{.ul}leLl’t‘l

merge

=%

Extraction-side prototypes
{ii1}e -0
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Background Repetition

Background repetition j’
Features f* | filter background E e o ﬁ Classifiers @, ¢

G =

» Starting from the first step, we record and update the cumulative occurrence
count of background pixels, 17, 4.

> In subsequent steps, the background regions of input images are filtered out
using current annotations and predictions from the previous model.

> The features of these background regions are repeated multiple times and fed
into the classifiers to add 7, extra background pixels, thus aligning the

proportion of background in the single-step training samples with that of

the “cumulative training set up to the current step”.
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Old-Class Feature Maintaining Loss

» A crucial prerequisite for effective prototype
replay is the relative stability of old-class feature
space.

» The old-class feature-maintaining loss utilizes
current labels and predictions from the previous
model to locate old-class regions. Within these
regions, it constrains the features extracted by
the current model to be close to those
extracted by the previous model.

Features f&t~1

filter old-class regionsl

"r- "

A
I
I
I
I

Locfm

similarize

"r' "

filter old-class regions T

Features f*
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Similarity-Aware Discriminative Loss

» Some similar "new-old class pairs" are prone to confusion

because they appear in different steps, making it
challenging for the feature extractor to generate
discriminative features.

The most direct approach is to penalize the similarity of
all "new-old class pairs" feature centers, increasing their
distance.

However, this method may lead to resource waste as
some "new-old class pairs" are inherently dissimilar.
Therefore, we penalize the similarity between each new
class feature center and its closest old class feature
center, focusing on the most challenging points.
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Experiments

19-1 15-5 15-1
Method Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped
base inc. all base inc. all base inc. all base inc. all base inc. all base inc. all Method 104 53
MiB [10] 696 256 674 702 221 678 718 433 647 755 494 69.0 462 129 379 351 135 297 e e A e G @
SDR [14] 699 373 684 69.1 326 674 735 473 672 754 526 699 592 129 481 447 218 392 MiB [10] 123 131 127 571 426 467
PLOP [12] 751 382 732 754 374 735 665 396 598 757 517 701 490 138 402 657 173 542 PLOP [12] 440 155 305 175 192 187
SSUL [11] 774 224 748 777 297 754 764 456 69.1 778 501 712 740 322 640 773 36.6 676 SSUL [11] 713 460 593 724 507 569
STCISS [55] 766 360 754 761 434 745 769 543 713 767 543 711 701 343 612 714 400 636 DKD [9] 731 465 604 696 535 581
RBC [58] 764 458 750 773 556 762 751 497 699 766 528 709 617 195 516 69.5 384 62.1 é?r"g{[ﬁi]e ;}13 g’gg 24113 %Z ‘5%2 ‘61;27,
DKD [9] 774 436 758 778 415 760 776 541 720 788 582 739 763 394 675 782 443 70.1 : : : : : :
UCD [56] 757 318 735 759 395 740 670 393 601 750 518 692 508 133 414 663 21.6 55.1 SSUL-M[11] 740 532 641 713 532 584
EWF [57] 782 32 746 779 67 745 793 382 695 794 382 695 753 225 627 785 316 673 DKD-M[9] 740 567 658 698 602 629
STAR-Lite 779 464 764 781 491 768 785 583 737 797 594 748 785 459 708 800 512 73.1 STAR-Basic 726 554 644 707 618 643
STAR-Basict 744 569 661 724 633 659
RECALL [59] 650 471 654 681 553 686 692 529 663 677 543 656 67.6 492 643 678 509 648
PLOPLong [60] - . - 748 397 731 - - - 760 483 694 - - - 720 267 612
SSUL—Mg[l[l]] 776 439 760 778 498 765 765 486 698 784 558 730 765 434 686 784 490 714 Pascal VOC 2012 Dataset - 2
DKD-M [9] 776 569 766 780 577 77.0 777 554 724 791 606 747 773 482 703 788 524 725
STAR-Basic = 78.0 475 765 782 485 768 785 579 736 797 596 749 781 482 710 798 516 73.1
STAR-Basict 779 536 767 781 563 770 786 584 738 80.1 622 758 778 504 713 79.8 555 74.0
Pascal VOC 2012 Dataset - 1 o 100-50 100-10 50-50
13-6 13-1 base inc. all base inc. all base inc. all
Method -
Base . all base . all MiB [10] 405 172 32.8 382 11.1 29.2 456 21.0 29.3
PLOP [12] 419 149 329 405 13.6 31.6 488 21.0 304
MiB [10] 528 179 418 516 229 425 SSUL [11] 41.3 18.0 33.6 40.2 18.8 33.1 484 20.2 29.6
PLOP [12] 532 101 396 524 151 40.6 RCIL [54] 423 188 345 393 17.6 32.1 483 25.0 325
DKD [9] 555 364 498 557 209 465 STCISS [55] 40.7 24.0 35.1 33.6 169 28.1 40.0 23.6 29.0
UCD [56] 530 186 421 522 234 431 RBC [58] 429 21.5 358 39.0 21.7 33.3 496 26.3 34.2
STAR-Lite 56.6 505 547 55.7 312 48.3 DKD [9] 424 229 36.0 415 194 342 488 263 33.9
STAR-Basic 564 509 548 557 311 483 EWF [57] 412 213 346 415 163 332 461 19.8 285
STAR-Lite 424 243 36.4 42.0 204 34.9 48.7 269 34.3
CityScapes Dataset PLOPLong [60] 41.9 149 329 405 13.6 31.6 488 21.0 30.4
. SSUL-M [11] 428 175 344 429 17.7 345 491 20.1 29.8
STAR-Basic: Save 100x Storage Cost DKD-M[9] 424 23.0 360 417 20.1 346 488 263 33.9
STAR-Basic 424 243 36.4 41.8 20.7 34.8 483 27.0 34.2

STAR-Lite: Replay Without Any Storage

ADE20K Dataset



Experiments

base classes:

aeroplane
bicycle
bird

horse
motorbike

person

incremental classes:

potted plant
sheep

sofa

train

tv/monitor

Input image STAR-Basic STAR-Lite Ground-truth




Ablation Study

PR

BPR OCFM SAD

disjoint 15-1

overlapped 15-1

base
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all
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STAR-Lite ==

NERRN
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76.4
76.9
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STAR-Basic ==
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PR: Prototype Replay -

BPR: Background Pixel Repetition
OCFM: Old-Class Features Maintaining Loss

SAD: Similarity-Aware Discriminative Loss

Ablation Study Results




Conclusion

 This paper introduces STAR, a CISS method designed to mitigate classification bias arising
from distribution variances between single-task training sets and the complete dataset.

 STAR employs two principal tactics: prototype replay and background pixel repetition. The
former rectifies the distribution of foreground classes by replaying old-class prototypes, while
the latter reintegrates missing background pixels by duplicating background pixels.

 Regarding the creation of prototypes, STAR diverges into two variants. STAR-Basic stores
prototypes after learning each task for future replay, whereas STAR-Lite employs a novel
prototype derivation method that considers the network's recognition and extraction patterns
to deduce prototypes.

e The OCFM loss is introduced to maintain the features of old classes, ensuring the model's
ability to learn new classes without losing prior knowledge. Additionally, the SAD loss is
proposed to enhance feature differentiation between similar old and new class pairs,
improving their distinguishability for the classifiers.
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Introduction

VQA

Question: What force from

. the baby’s hand opens the
Pretralned MLLM Cabinetydoor?

Tin

Grounding

Question: Please provide

the bounding box for the
black cat.

\ & % 3 2
- 7 4 >
~ & SN
a8 v &
' >
. " - £

-

Classification

Question: Please classify
this image according to
the ImageNet taxonomy.

> In Multimodal Continual Instruction Tuning (MCIT), a pretrained
Multimodal Large Language Model (MLLM) is sequentially tuned on a
series of multimodal tasks, aiming to learn new tasks while minimizing

forgetting of previously learned ones.
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Introduction

Does the forgetting problem become more severe or alleviated for
large and small models under continual learning architectures?

” AW‘-
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Introduction

Does the forgetting problem become more severe or alleviated for
large and small models under continual learning architectures?

A No forgetting
IEI (Just after learning this task)

‘ learn other tasks

Ve 'é' Africa Superficial forgetting (3¢)
Which continent is highlighted?
A. Africa

B. North America E [0.0,0.36, 0.29, 0.6] Superficial forgetting (x)
C. South America I |
D. Asia

Answer with the option's letter ; ;
1 from the given choices directly. |g| C Essential forgetting <x)
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Contributions

a)

b)

C)

We formally define superficial forgetting and essential forgetting in MCIT.
Furthermore, our proposed method, SEFE, addresses these challenges and
achieves state-of-the-art performance.

To mitigate superficial forgetting, we introduce the Answer Style
Diversification (ASD) paradigm that unifies the answer domain across tasks
by rephrasing questions, thereby reducing the model’s bias toward specific
response styles. Additionally, we create CoIN-ASD, an ASD-adjusted version
of the ColN benchmark, which can serve as a new benchmark for evaluating
essential forgetting in future MCIT studies.

To address essential forgetting, we present RegLoRA. By identifying critical
elements in the weight update matrices and applying regularization
constraints, RegLoRA ensures that LoRA fine-tuning does not disrupt the

model’s existing knowledge. .



Forgetting Types

No forgetting
Igl A (Just after learning this task) l

‘ learn other tasks

lgl Africa Superficial forgetting (x)
Which continent is highlighted?
A. Africa

B. North America g [0.0,0.36,0.29, 0.6] Superficial forgetting ({)
C. South America | !

D. Asia
Answer with the option's letter

x from the given choices directly. |g| c Essential forgettmg @

» Superficial Forgetting: task knowledge may be retained while the
response style is forgotten.

» Essential Forgetting: task knowledge is forgotten.
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Answer Style Diversification

» Superficial forgetting arises from the gap in answer space between tasks,
as the model tends to respond in the answer style of the most recently
learned task.

> To address this issue, the Answer Style Diversification (ASD) paradigm
reformulate questions in each task into five unified formats, aligning the
answer space across tasks.

> These five formats include Short Answer Question, Yes/No Question,
Multiple Choice Question, Brief Explanation Question, and Detailed
Explanation Question. After analyzing 15 mainstream benchmarks, we find
that these formats sufficiently cover the requirements of all tasks.
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Answer Style Diversification

Original Dataset

' Short Answer Question ' Short Answer Question | ' Short Answer Question

What position is this man playing? What is the person playing? What method of transportation is
Answer the question using a single Answer the question using a single this? Answer the question using a

word or phrase. x word or phrase. l single word or phrase. x

Ial pitcher |g| tennis |g| airplane

What position is this man playing? What is the person playing? What method of transportation is
Answer the question using a single Answer: badminton this?
word or phrase. Is this answer correct? Answer A.bus
'Yes' or 'No'. l B.airplane
C.ship
o D. train
|g| bitces No Answer with the option's letter
'g' from the given choices directly.

Short Answer Question -
Yes/No Question g 5
1 |

. Multiple Choice Question |

Converted Dataset

Short Answer Question |

What time is it? Answer the
question using a single word or

phrase. x
|g| night

What time is it? Answer the
question and provide a brief
explanation.

Night. The sky is dark, indicating it
|g| is nighttime.

Brief Explanation Question

|g|

| Detailed Explanation Question |

Short Answer Question |

What animal is this? Answer the
question using a single word or
phrase.

sheep

What animal is this? Answer the
question and provide a detailed
explanation.

Sheep. The primary animal in the
image is a sheep. This is evident
from the woolly coat and the
overall build, characteristic of
sheep. There are also several
lambs in the image, which are
baby sheep.
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Answer Style Diversification

Method Accuracy on Each Task (%) Aggregate Results (%)

SOQA  VOA™ ImgNet GQA VizWiz Grd VQAY” VQA’“® MFTt+ MFNT MAAtT BWTJ
FFT 2.95 36.38 5235 4640 3390 000 61.65 5000 | 6587 3545 36.73 -30.42
LoRA [20] 54.05 4463 4125 4755 2080 0.85 5930 6430 | 70.21 4159 3953 -28.62
O-LoRA [45] 7540 5289 7185 4730 3735 7.10 6185 61.20 | 69.30 5187 4956 -17.43
LoTA [38] 67.30 41.51 8.25 37.15 4225 0.10 4795 56.15 5472 3758 5046 -17.14

~ FFT+ASD | 7450 50.12 6540 5435 4550 000 6440 68.50 | 6828 52.85 57.18 -1544
LoRA+ASD [20] 7445 4970 3930 52.00 5045 7.05 6225 4780 | 68.13 4788 59.71 -20.26
O-LoRA+ASD [45] | 75.20 5536 6750 5470 5290 1540 6445 35.05 65.59 5257 61.63 -13.02
LoTA+ASD [38] 7690 4265 1585 40.25 4510 030 5435 54.00 | 5699 41.18 56.28 -15.82

MFT: Mean Fine-tune Accuracy By adding ASD to existing methods, MFN, MAA,

MFN: Mean Final Accuracy and BWT achieve average improvements of
MAA: Mean Average Accuracy 7.00%, 14.63%, and 7.27%, respectively.

BWT: Backward Transfer
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RegLoRA

» Although superficial forgetting is alleviated by ASD, essential forgetting—

the true loss of past knowledge—still remains.

> Experiments reveal that only a small subset of parameters change

significantly during task learning. These key parameters likely carry most of

the task-specific knowledge.

» Therefore, we propose RegLoRA, which constrains updates to parameters

significantly changed during previous tasks, thereby preserving knowledge

of earlier tasks.

71



4 510 4 4 |-5]|10|-4 0,000
Bix4, |1 |2 |-1|2| TopM% 1|12]-1]2 ojlojo|o
> —_— —_—
3|0 3|7 310]-3})7 0 0|01
11-6|-1]|1 1§-6J11]1 0j1|0,0
Weight Update Matrix AW, Key Elements Regularization Mask R,
3|12} 9 31-1121 9 0,0 0]1
B,xA, | 8|2 |0|5| TopM% | 8 |-2| 0|5 10/ 0/0
> > — —
0|3 | 4| 2 0|3 |-4] 2 0/0 /0 0
1 10|66 -1 0|-6]6 0,00/ 0
Weight Update Matrix AW, Key Elements Regularization Mask R,
......... >0 o o!lo| 1
Bijj S0 feee | ooe | aee 110 0!o0
. —
......... >0 0 o0o!o0| 1
=4V ETRIETE 0|l1f0|o0
Weight Update Matrix AW;  Regularization Loss L,  Regularization Mask YR,

> After each task, a
regularization mask is
saved to identify
important elements for
that task.

» During future training,
updates to all previously
identified elements are
constrained.
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RegLoRA

. Aggregate Results (%)
Configuration MFTY MENt MAA? BWT?
Baseline (LoRA) 70.21 4159 3953  -28.62
+ ASD 68.13 47.88  59.71  -20.26

+ ASD + ReglLoRA

69.02 58357 63.04 -10.45
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Quantitative Comparison

Method Accuracy on Each Task (%) Aggregate Results (%)
SOQA  VOA™ ImgNet GQA VizWiz Grd VQAY™ VQA°® MFTt+ MFN1T MAAT BWTJ
FFT 295 3638 5235 4640 3390 0.00 6165 50.00 | 65.87 3545 3673 -30.42
LoRA [20] 54.05 44.63 4125 4755 2080 085 5930 64.30 | 70.21 4159 3953 -28.62
O-LoRA [45] 7540 52.89 7185 4730 3735 7.10 6185 6120 | 69.30 5187 4956 -17.43
LoTA [38] 67.30 4151 825 37.15 4225 0.10 4795 56.15 | 5472 3758 5046 -17.14
"~ FFT+ASD | 7450 50.12 6540 5435 4550 000 6440 6850 | 6828 5285 57.18 -15.44

LoRA+ASD [20] 7445 4970 3930 52.00 5045 7.05 6225 4780 | 68.13 4788 59.71 -20.26
O-LoRA+ASD [45] | 7520 5536 67.50 54.70 5290 1540 6445 3505 | 6559 5257 61.63 -13.02
LoTA+ASD [38] 7690 4265 1585 40.25 4510 030 5435 54.00 | 5699 41.18 56.28 -15.82
SEFE (Ours) 7535 58.66 83.10 54.25 4885 1675 6535 66.25 | 69.02 5857 63.04 -10.45




Qualitative Comparison

Casel Case 2

Case 5

(a) (|| N,
Context: Use the graph to answer the question below.
Which three months have over 200millimeters of
Which material are these marbles precipitation in Singapore? What is the player's number in white
made of? A.May, June, and July and green?
A.glass B. August, September, and October Reference OCR token: GUWES, 22, Please provide the bounding box
B. cardboard C. November, December, and January CLOPTON, 31 Which kind of furniture is brown? coordinates of the region described by the
Answer with the option's letter Answer with the option's letter from the given Answer the question using a single Answer the question using a single sentence 'girl in plaid shirt' in the format
1 from the given choices directly. 1 choices directly. x word or phrase. x word or phrase. x [x1,y1,x2, y2].

(b) ,g, Glass @ Superficial ,g| August, September, and October @ Both .gl Maillot @ Superficial lél 05,036,099, 09] @ Superficial .gl Hght @ Superficial
(c) lgl A @ lgl B @ Essential lgl 3 @ Essential 'gl couch @ lgl [0.72,034,0.9, 0.65] @ Essential
(d) 'E' A @ nﬂn C @ -Q- 22 @ |é| couch @ 'QI [0.76,0.33, 0.99, 0.65] @

Task: ScienceQA (task 1) Task: ScienceQA (task 1) Task: TextVQA (task 2) Task: GQA (task 4)

Task: Grounding (task 6)
(e) Model Stage: Learned 8 tasks (last Model Stage: Learned 8 tasks (last learned task: OCR- Model Stage: Learned 3 tasks (last learned Model Stage: Learned 6 tasks (last learned Model Stage: Learned 7 tasks (last learned
learned task: OCR-VQA) VQA) task: ImageNet) task: Grounding) task: VQAv2)
Ground Truth: A Ground Truth: C Ground Truth: 22 Ground Truth: Couch Ground Truth: [0.76, 0.34, 1.0, 0.64]

(a) Instruction; (b) Response from the baseline model; (c) Response from the baseline model with ASD added; (d)
Response from the baseline model with both ASD and RegLoRA added; (e) Basic information of the case.



Conclusion

> This paper identifies two forgetting types in MCIT—superficial forgetting,
where the model’s response style becomes biased, and essential forgetting,
where factual knowledge is lost.

> To address these issues, we propose the SEFE method, which includes two
components: the ASD paradigm and ReglLoRA. ASD mitigates superficial
forgetting by diversifying question types within tasks, improving response
style robustness and knowledge assessment. RegLoRA combats essential

forgetting by identifying and regularizing critical weight components across
LoRAs to preserve knowledge.

» Experiments demonstrate that both ASD and ReglLoRA are effective in tackling
their respective forgetting types, and together in SEFE, they achieve state-of-
the-art performance in mitigating catastrophic forgetting in MCIT.

76



o 4§ 7 i

SHANDONG UNIVERSITY

- o~
K‘
9 © - \
= CltyU Cityu Q‘ \ 54
e EAR L FRERF B it Sam Kwong #i8 (SATERREL)

— FX IR SBEER —




