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Introduction —— Transient → Continual Learning

As shown in the above image, a conventional model can only be trained once and has 
fixed capabilities. In contrast, a model with continual learning abilities can 
continuously expand its capabilities to meet new requirements.
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Transient Perception Continual Perception
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Introduction

Ø However, directly transferring conventional SIS methods for land images to underwater scenes 
may struggle to achieve ideal performance attribute to the domain gap of intrinsic 
characteristics and extrinsic circumstances between land and underwater living.

Ø Salient Instance Segmentation 
(SIS), an emerging and promising 
visual task, aims to segment out 
visually salient objects in a scene 
and distinguish individual salient 
instances, which is beneficial for 
vision tasks such as marine 
resource exploration and 
underwater human-computer 
interaction.



Motivation

Ø On the one hand, there is no general underwater salient image instance 
segmentation dataset to promote training and evaluation of the underwater salient 
instance segmentation models. 

Ø On the other hand, even state-of-the-art SIS models trained on large-scale land-
based datasets coupled with the best underwater image enhancement algorithms 
cannot achieve satisfactory performance in underwater environments.

l To alleviate this issue, we construct the first large-scale underwater salient instance 
segmentation (USIS) dataset, USIS10K, aiming to promote the development of 
salient instance segmentation for underwater tasks. 

l Simultaneously, we first attempt to apply Segment Anything Model (SAM) to 
underwater salient instance segmentation and propose USIS-SAM, aiming to 
improve the segmentation accuracy in complex underwater scenes.



Contributions

a) We construct the first large-scale dataset, USIS10K, for the underwater salient 
instance segmentation task, which contains 10,632 images and pixel-level 
annotations of 7 categories. As far as we know, this is the largest salient instance 
segmentation dataset, and includes Class-Agnostic and Multi-Class labels 
simultaneously.

b) We propose the first underwater salient instance segmentation model, USIS-SAM, 
as far as we know. In USIS-SAM, we design Underwater Adaptive ViT Encoder to 
incorporate underwater visual prompts into network via adapters, and Salient 
Feature Prompter Generator to automatically generate salient prompters, guiding 
an end-to-end segmentation network.

c) Extensive public evaluation criteria and large numbers of experiments verify the 
effectiveness of our USIS10K dataset and USIS-SAM.



USIS10K Dataset 
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Dataset Statistic and Challenges
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Ø Challenge in the number of instance.
In USIS10K dataset, multiple salient instances may exist in a single image. There are 1731 images with more than 3 
salient instances in our dataset, accounting for 16.3% of the total.

Ø Challenges in small or large instances.
In USIS10K dataset, the average size of the salient instances is 34,336 pixels (approximately 185×185 pixels), 
which averaged 10.3% of the image size. There are 3053 salient instances smaller than 1% of the image area, 
(16.0% of the total), while there are 1733 instances larger than 30% of the image area, (9.1% of the total). 

Ø Challenges in channel intensity of underwater images.
Optical images inevitably suffer from color attenuation due to the selective absorption of water at different 
wavelengths. This poses an additional challenge for the network to properly understand and handle the image 
color distortion caused by this attenuation



Dataset Statistic and Challenges

11

Ø  Location of Salient Objects (Less central bias).
In the SIS10k dataset, approximately 13.5% of the 
locations have fewer than 1000 instances and 32% 
have fewer than 2,000 instances, while in our dataset, 
only 2.75% of the locations have fewer than 1,000 
instances and 22.5% have fewer than 2,000 instances.

A set of salient maps from our dataset and SIS10K

Ø Color Contrast of Salient Instance.
Saliency is often related to the contrast between 
foreground and background, and it is critical to 
check whether salient instances are easy to detect. 
It can be seen that the global contrast of USIS10K is 
slightly higher than that of SIS10K. In addition, the 
local contrast of USIS10K at salient instances is lower 
than that of SIS10K. This poses a greater challenge in 
accurately segmenting the salient instance masks at 
the network boundary portion.Global/Local Color Contrast  of Salient Instance



USIS-SAM

Figure 1. (a) USIS-SAM framework. The USIS-SAM framework modifies the SAM by adding the Underwater 
Adaptive ViT Encoder and the Salient Feature Prompt Generator. (b) The structure of UA-ViT. In the figure, 
SFFM stands for Salient Feature Fusion Module, CA stands for Channel Adapter.



Underwater Adaptive ViT Encoder

Adapter：
𝑃 = 𝑀𝐿𝑃!"# (𝜎(𝑀𝐿𝑃$%!&$#(𝐹))),

where 𝐹 is the input feature, and 𝑃 is the output prompt for each 
adapter layer. 𝜎	is the activation function.

Channel Adapter：
𝐶 = 𝐹×𝐶𝑜𝑛𝑣"$(𝜎(𝐶𝑜𝑛𝑣'!()(𝑃𝑜𝑜𝑙(𝐹)))),

where 𝐶 is the output feature after channel adapter, 𝐶𝑜𝑛𝑣 is a 
1×1 convolutional layer, and 𝑃𝑜𝑜𝑙 is an average pooling layer.

In USIS-SAM, we design the Underwater Adaptive ViT (UA-ViT) to 
integrate underwater visual prompts into the network via 
adapter and channel adapter. UA-ViT enables a more effective 
utilization of the SAM image encoder in underwater scenarios.



Salient Feature Prompt Generator

Figure 3. Visualize features generated by 
the Salient Feature Prompt Generator. 

Figure 2. The structure of Salient Feature Prompt Generator 
(SFPG). The SFPG module efficiently filters out non-salient noise, 
allowing for robust feature aggregation of salient instances.

The USIS task needs the model to automatically recognize and segment each salient object in underwater 
images. However, SAM requires the user to explicitly provide foreground points, boxes, or texts as prompts to 
guide the model segmentation. Therefore, we design the Salient Feature Prompt Generator to directly predict 
prompts embedding of salient instances, enabling end-to-end performing the USIS task



Experiments

Table 1. Quantitative comparisons with state-of-the-arts on the USIS10K datasets. Urank stands for an 
underwater image enhancement method in UnderwaterRanker (AAAI 2023 oral), SAM+BBox uses inference 
results from Faster RCNN as prompts for prediction, SAM+Mask stands for Mask RCNN networks use SAM 
as backbone. The RSPrompter in the table is the RSPrompter-anchor framework.



Experiments

Figure 4. Qualitative comparison on the USIS10K dataset. Each salient instance is represented by a 
unique color, and the segmented mask is superimposed on the image.



Ablation Study

Table 2. Effectiveness of each component in 
USIS-SAM, replace SFPG means to use Multi-
scale Feature Enhancer Module in 
RSPrompter (TGARS’24) instead of SFPG.

Table 3. Generalization Ability of USIS-SAM. 
Quantitative comparisons with state-of-the-
art methods on SIS10K indicate that USIS-
SAM did not overfit our dataset.

Table 4. Effectiveness of each component in 
Underwater Adaptive ViT Encoder, w/o 
Adapter and w/o CA denote the removal of 
Adapters and Channel Adapter.

Table 5. Effectiveness of each component in 
Salient Feature Prompt Generator, w/o SFFM 
and w/o Multi-Conv denote the removal of 
the salient feature fusion module and multi-
scale convolution module.



Conclusion and Future Work

Ø We have constructed the first general underwater salient image instance 
segmentation dataset with pixel-level annotations, which enables us to 
comprehensively explore the underwater salient instance segmentation task. 

Ø we first attempt to apply Segment Anything (SAM) model to underwater 
salient instance segmentation and propose USIS-SAM, aiming to improve the 
segmentation accuracy in complex underwater scenes. Extensive experiments 
have validated the effectiveness and generalizability of USIS-SAM.

Ø In future work, we plan to extend the USIS datasets to broader and more 
challenging underwater images and underwater videos.
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Problem Definition: Few-Shot Segmentation

20

Few-shot learning[1] Segmentation

Seg

Seg
FSL

Few-Shot  Seg

Few-Shot Segmentation

Common network frameworks for FSS[2] 

[2] Tian et al, “Prior guided feature enrichment network for few-shot segmentation.” TPAMI 2020.[1] Chen et al, “A closer look at few-shot classification.” ICLR 2019.

Main Purpose

The query and support images differ 
in appearance, shape, and scale

Segment the query image under the 
guidance of the support branch

Main Challenges



Motivation

Previous FSS methods only use supporting features 
to generate prototypes, ignoring the specific needs 
of the query. The large difference between the 
query image and the supporting features can bring 
negative impact to the final prediction results.

Therefore, we propose query-guided 
prototype evolution networks, which 
integrate query features into the 
generation process of foreground and 
background prototypes.



Contributions

Ø We propose a novel FSS method named QPENet, which embodies the core 
idea of using the query image to guide the evolution of prototypes, thereby 
enhancing their efficacy for segmenting the specific query image.

Ø We introduce innovative PPG and DPE modules to facilitate the evolution of 
the foreground prototype following a support-query-support process, and a 
novel GBC module to eliminate components that might reflect the current 
foreground class from the global background prototype.

Ø Extensive experiments conducted on two widely adopted datasets 
demonstrate that our model excels in delivering state-of-the-art performance 
in the domain of FSS.

22
https://github.com/rmcong/QPENet_TMM24

https://github.com/rmcong/QPENet_TMM24


Our QPENet
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Evolution of Foreground Prototype

Pseudo-prototype Generation Module (PPG)

In order to obtain the specific requirements of
the query image, the query image is initially
predicted and the predicted foreground part is
generated into a pseudo-prototype. The
generated pseudo-prototype serves as a vehicle
for the specific requirements of the query image. 24



Evolution of Foreground Prototype

25

Dual Prototype Evolution Module (DPE)

The pseudo-prototype is used for guided
segmentation of the support image. The
segmentation result is compared with the support
mask so that the support foreground is separated
into two parts with different intimacy from the
query image.



Evolution of Background Prototype

The background semantics of the query image is 
significantly different from that of the support 
image.

Initialize a global background prototype, and 
during training, predict the background maps of 
the query and support images to update it.

After obtaining the specific requirements of the 
query background, we adapt the global 
background prototype.



Experiments
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Experiments
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PASCAL-5i dataset



Experiments

29

CoCo-20i dataset



Ablation Study

30



Conclusion

• In this paper, we propose QPENet to optimize prototypes to address the 
specific characteristics of the current query image. 

• QPENet presents two types of prototypes, namely, foreground and 
background prototypes, both of which evolve under the guidance of the 
query features.

• Furthermore, we design the FFA module to maximize the utilization of these 
prototypes. 

• In addition, extensive experiments on PASCAL-5i and COCO-20i datasets 
demonstrated the superiority of our proposed model.

31
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Introduction

Ø Continual image classification, also known as continual learning (CL), aims to enable 
models to learn a number of classification tasks sequentially and predict new tasks(or 
categories) that have no overlap with previously learned tasks while maintaining good 
performance on previously learned tasks.

Ø Catastrophic forgetting refers to the problem that a model’s performance on 
previously learned tasks significantly drops after learning a new task since no previous 
task samples are available in current task training, which is the key challenge that must 
be addressed in continual learning models.

CL Model

Task 1

CL Model

Task 2

CL Model

Task n

. . .Train Train Train
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Motivation

Ø Current feature decomposition methods 
generally focus on increasing the distance 
between task-invariant and task-variant 
features without fully considering their 
relationship, which brings about low-
quality decomposition. Moreover, these 
methods mainly focus on decomposing 
features within an individual task and 
ignore the important information 
conveyed by the relationships between 
features across tasks.

35



Motivation

Ø Most contrastive learning methods learn 
instance feature representations 
through instance relation by 
constructing learning pairs. 

Ø By contrast, we design a comprehensive 
contrastive learning strategy under the 
feature decoupling framework to 
enhance feature representation and 
model the relationship between task-
invariant and task-variant features.

…
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…
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Contributions

a) We propose an ACCL method for the continual classification task that 
effectively explores inner- and cross-task relations by constructing all-
round contrastive learning pairs.

b) To capture the inner-task relations, we propose the KDC that utilizes 
three types of contrast to decompose generalized task-invariant 
features and diverse variant features.

c) Considering the relation between current and previous tasks, we 
incorporate replay samples with contrastive constraints to alleviate 
the forgetting problem and model the cross-task relations.

37



Our ACCL Method

Our model comprises task-invariant and task-variant feature extractors, denoted as 𝑆 and 𝑃, respectively, 
along with their respective projection heads, 𝑆𝐻 and 𝑃𝐻. Additionally, it incorporates a knowledge 
decomposition module (KDC), a discriminator (D), and a classifier (C) specific to the task t. 
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https://github.com/rmcong/ACCL TMM24

https://github.com/rmcong/ACCL%20TMM24


Knowledge Decomposition Constraint

Cross-task relation:
Learning pairs constructed by the
memory and current task:

𝑝𝑝 includes positive pairs
{𝑥*,-.', 𝑥*,/}

!!"#

!!"$

!!"%""

Improving Consistency of Task-Invariant Features.
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Inner-task relation:
Learning pairs constructed by the
task-invariant features (𝑝𝑝)：

𝑝𝑝 = 𝑥*,-.', 𝑥*,-.' , 𝑥*,-.', 𝑥*,-0' .



Knowledge Decomposition Constraint

Inner-task relation:
Learning pairs constructed by the
task-variant features (v𝑝)：

positive pairs 𝑥1,-.', 𝑥1,-.' ,
negative pairs 𝑥1,-.', 𝑥1,-0' .

!!"#

!!"$

!!"%

"#

Well-distributed Task-Variant Features.
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Cross-task relation:
Learning pairs constructed by the memory and current task:

𝑣𝑝 includes negative pairs {(𝑥1,-.', 𝑥1,/ )}
KDC combines 𝑣𝑝 to form the constraint 𝐿1，which is similar to 𝐿*1.



Knowledge Decomposition Constraint
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Inner-task relation:
Learning pairs construct by the task-invariant and
task-variant features (𝑛𝑝)：

𝑛𝑝 = 𝑥*+,-., 𝑥$+,-. , 𝑥*+,-., 𝑥$+,/.

Enhancing Discriminability between Invariant and Variant Features.

𝐿*$ = ∑.∈1
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As they use the same anchor, KDC combines 𝑛𝑝 and 𝑝𝑝 to 
form the constraint 𝑳𝒔𝒑. 41

Cross-task relation:
Learning pairs constructed by the memory and
current task:

𝑛𝑝 includes negative pairs (𝑥*+,-., 𝑥$+& }



Our Method
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Experiments

Quantitative comparisons with state-of-the-arts on the 
MiniImageNet datasets. 

Quantitative comparisons with state-of-the-arts on the 
CIFAR-100 datasets. 
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Visualization

Baseline

ACCL

 (a)   (b)   (c) 44



Ablation Study

Ablation study of each component in KDC on 
MiniImageNet dataset.

Ablation study of each loss term in KDC on MiniImageNet 
dataset.

Hyperparameter finetuning on the MiniImageNet dataset.

Quantitative comparison of continual semantic segmentation 
task with the baseline on the PASCAL VOC 2012 dataset.

45



Conclusion

Ø In this work, we design ACCL for continual classification tasks, integrating 
the KDC to investigate the inner-task relations when decoupling task-
invariant and task-variant features. By incorporating an orthogonal 
constraint and an adversarial training strategy, our method enables the 
effective extraction of well-distributed task-invariant and class-specific 
features within a single task. 

Ø Furthermore, we thoroughly investigate cross-task relations between 
memory samples and current task samples, which supplement the 
inner-task relation, resulting in the effectiveness of preventing 
forgetting problems. 

Ø Extensive comparisons and ablation studies validate the superiority and 
effectiveness of our proposed method.

46
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Task Definition

48

Ø In class-incremental semantic segmentation (CISS), each step focuses on different
classes, with its training set only annotates current classes, while previously learned
classes and future classes are labeled as background.

Ø The images in each single-step training set contain at least one pixel from current
classes, and images devoid of any current class are excluded.



Motivation

49

Ø There are a lot of false positives for classes in incremental steps (i.e.,
steps beyond the first).

Ø This is because the proportion of current classes in the single-step
training set is significantly higher than in the complete dataset,
leading to classification bias, which is especially pronounced in
incremental steps with fewer classes.

To address this issue, the key is to augment past classes and background
pixels in the training samples of the incremental steps, thereby reducing
the proportion of the current class. At the same time, it is important to
avoid triggering excessive storage requirements.



Solution

Prototype Replay

At each task, the pixel occurrence count 
for each class is recorded. In subsequent 
tasks, pixel-level class prototypes are 
replayed based on these occurrence 
counts.

50

Background Repetition

At each task, the cumulative pixel count 
of the background class is updated. In 
subsequent tasks, background features 
are duplicated according to this count.

These two strategies respectively adjust the proportion of foreground 
and background classes within the single-step training samples to match 
the proportion in the “cumulative training set up to the current step”, 
thus avoiding bias.



Contributions

51

Ø We propose a new CISS method named STAR. Its basic version stores compact 

prototypes and necessary statistics for each learned class. This enables a 
comprehensive reconstruction of single-task training sample distributions, aligning 
them with the complete dataset to mitigate classification bias.

Ø We develop a prototype derivation method that considers both the recognition and 
extraction patterns of the network. This empowers prototype creation without the 
need for storage, leading to a lite version.

Ø The OCFM loss is introduced to retain learned knowledge in a spatially targeted 

manner, maintaining old-class features while ensuring flexibility for learning new 
classes. Additionally, the SAD loss is designed to enhance the feature 
discriminability between similar old-new class pairs, facilitating the classification.



Our STAR Method

52

https://github.com/jinpeng0528/STAR

https://github.com/jinpeng0528/STAR


Prototype Replay – Basic Version

53

• After the learning of each task, all training samples in this task are passed 
through the frozen model to compute the features.

• The feature centers are stored as prototypes and replayed in subsequent tasks.

• Since prototypes are highly compact, they require only 1/100 of the storage 
compared to existing replay-based methods that storing raw images.



Prototype Replay – Lite Version

54

Recognition Patterns
The classifier is isolated from the network. 
Then, it is used to infer representative 
features of previous classes, forming the
recognition-side prototype.

By leveraging the network’s classification recognition and feature extraction patterns, 
prototypes are derived without the need for any storage.

Extraction Patterns
Images from the current task are fed into 
the network, and features from regions 
predicted as belonging to previous classes 
are aggregated to construct the
extraction-side prototypes.



Background Repetition
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Ø Starting from the first step, we record and update the cumulative occurrence 
count of background pixels, 𝜂PQ. 

Ø In subsequent steps, the background regions of input images are filtered out 
using current annotations and predictions from the previous model.

Ø The features of these background regions are repeated multiple times and fed 
into the classifiers to add 𝜼𝒃𝒈  extra background pixels, thus aligning the 
proportion of background in the single-step training samples with that of 
the ”cumulative training set up to the current step”.



Old-Class Feature Maintaining Loss

56

Ø A crucial prerequisite for effective prototype 
replay is the relative stability of old-class feature 
space.

Ø The old-class feature-maintaining loss utilizes 
current labels and predictions from the previous 
model to locate old-class regions. Within these 
regions, it constrains the features extracted by 
the current model to be close to those 
extracted by the previous model.



Similarity-Aware Discriminative Loss

57

Ø Some similar "new-old class pairs" are prone to confusion 
because they appear in different steps, making it 
challenging for the feature extractor to generate 
discriminative features.

Ø The most direct approach is to penalize the similarity of 
all "new-old class pairs" feature centers, increasing their 
distance. 

Ø However, this method may lead to resource waste as 
some "new-old class pairs" are inherently dissimilar. 
Therefore, we penalize the similarity between each new 
class feature center and its closest old class feature 
center, focusing on the most challenging points.



Experiments
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Pascal VOC 2012 Dataset - 1

ADE20K Dataset

CityScapes Dataset
STAR-Basic: Save 100x Storage Cost
STAR-Lite: Replay Without Any Storage

Pascal VOC 2012 Dataset - 2



Experiments
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Ablation Study

60

PR: Prototype Replay

BPR: Background Pixel Repetition

OCFM: Old-Class Features Maintaining Loss

SAD: Similarity-Aware Discriminative Loss

Ablation Study Results

STAR-Lite

STAR-Basic



Conclusion
• This paper introduces STAR, a CISS method designed to mitigate classification bias arising 

from distribution variances between single-task training sets and the complete dataset.

• STAR employs two principal tactics: prototype replay and background pixel repetition. The 
former rectifies the distribution of foreground classes by replaying old-class prototypes, while 
the latter reintegrates missing background pixels by duplicating background pixels.

• Regarding the creation of prototypes, STAR diverges into two variants. STAR-Basic stores 
prototypes after learning each task for future replay, whereas STAR-Lite employs a novel 
prototype derivation method that considers the network's recognition and extraction patterns 
to deduce prototypes. 

• The OCFM loss is introduced to maintain the features of old classes, ensuring the model's 
ability to learn new classes without losing prior knowledge. Additionally, the SAD loss is 
proposed to enhance feature differentiation between similar old and new class pairs, 
improving their distinguishability for the classifiers.

61
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Introduction

Ø In Multimodal Continual Instruction Tuning (MCIT), a pretrained 
Multimodal Large Language Model (MLLM) is sequentially tuned on a 
series of multimodal tasks, aiming to learn new tasks while minimizing 
forgetting of previously learned ones.

63

Pretrained MLLM
Question: What force from 
the baby’s hand opens the 
cabinet door?

VQA
Question: Please provide 
the bounding box for the 
black cat.

Grounding
Question: Please classify 
this image according to 
the ImageNet taxonomy.

Classification



Introduction

64

Does the forgetting problem become more severe or alleviated for 
large and small models under continual learning architectures?



Introduction

65

Does the forgetting problem become more severe or alleviated for 
large and small models under continual learning architectures?



Contributions
a) We formally define superficial forgetting and essential forgetting in MCIT. 

Furthermore, our proposed method, SEFE, addresses these challenges and 
achieves state-of-the-art performance.

b) To mitigate superficial forgetting, we introduce the Answer Style 
Diversification (ASD) paradigm that unifies the answer domain across tasks 
by rephrasing questions, thereby reducing the model’s bias toward specific 
response styles. Additionally, we create CoIN-ASD, an ASD-adjusted version 
of the CoIN benchmark, which can serve as a new benchmark for evaluating 
essential forgetting in future MCIT studies.

c) To address essential forgetting, we present RegLoRA. By identifying critical 
elements in the weight update matrices and applying regularization 
constraints, RegLoRA ensures that LoRA fine-tuning does not disrupt the 
model’s existing knowledge. 66



Forgetting Types

ØSuperficial Forgetting: task knowledge may be retained while the 
response style is forgotten.

ØEssential Forgetting: task knowledge is forgotten.
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Answer Style Diversification

Ø Superficial forgetting arises from the gap in answer space between tasks, 
as the model tends to respond in the answer style of the most recently 
learned task. 

Ø To address this issue, the Answer Style Diversification (ASD) paradigm 
reformulate questions in each task into five unified formats, aligning the 
answer space across tasks.

Ø These five formats include Short Answer Question, Yes/No Question, 
Multiple Choice Question, Brief Explanation Question, and Detailed 
Explanation Question. After analyzing 15 mainstream benchmarks, we find 
that these formats sufficiently cover the requirements of all tasks.
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Answer Style Diversification
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Answer Style Diversification
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MFT: Mean Fine-tune Accuracy
MFN: Mean Final Accuracy
MAA: Mean Average Accuracy
BWT: Backward Transfer

By adding ASD to existing methods, MFN, MAA, 
and BWT achieve average improvements of 
7.00%, 14.63%, and 7.27%, respectively.



RegLoRA

Ø Although superficial forgetting is alleviated by ASD, essential forgetting—
the true loss of past knowledge—still remains.

Ø Experiments reveal that only a small subset of parameters change 
significantly during task learning. These key parameters likely carry most of 
the task-specific knowledge. 

Ø Therefore, we propose RegLoRA, which constrains updates to parameters 
significantly changed during previous tasks, thereby preserving knowledge 
of earlier tasks. 
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RegLoRA

Ø After each task, a 
regularization mask is 
saved to identify 
important elements for 
that task.

Ø During future training, 
updates to all previously 
identified elements are 
constrained.
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RegLoRA
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Quantitative Comparison
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Qualitative Comparison
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(a) Instruction; (b) Response from the baseline model; (c) Response from the baseline model with ASD added; (d) 
Response from the baseline model with both ASD and RegLoRA added; (e) Basic information of the case.



Conclusion

Ø This paper identifies two forgetting types in MCIT—superficial forgetting, 
where the model’s response style becomes biased, and essential forgetting, 
where factual knowledge is lost.

Ø To address these issues, we propose the SEFE method, which includes two 
components: the ASD paradigm and RegLoRA. ASD mitigates superficial 
forgetting by diversifying question types within tasks, improving response 
style robustness and knowledge assessment. RegLoRA combats essential 
forgetting by identifying and regularizing critical weight components across 
LoRAs to preserve knowledge.

Ø Experiments demonstrate that both ASD and RegLoRA are effective in tackling 
their respective forgetting types, and together in SEFE, they achieve state-of-
the-art performance in mitigating catastrophic forgetting in MCIT.
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