

全场景视觉显著性计算 FULL-SCENE VISUAL SALIENCY COMPUTING

报告人:丛润民

山东大学控制科学与工程学院 机器智能与系统控制教育部重点实验室 2023-09-22

- Introduction
- Technical Methods
 - > SOD for Single-modality Data (TCSVT'23)
 - > SOD for Cross-modality Data (TIP'21)
 - > SOD for Optical Remote Sensing Data (TGRS'22)
- Future Work

Introduction

Simulating the human visual attention mechanism, salient object detection aims at detecting the salient regions automatically, which has been applied in image/video segmentation, image/video retrieval, image retargeting, video coding, quality assessment, action recognition, and video summarization.

Introduction

单模态视觉显著性计算 SOD FOR SINGLE-MODALITY DATA

A Weakly Supervised Learning Framework for Salient Object Detection via Hybrid Labels

Runmin Cong, Qi Qin, Chen Zhang, Qiuping Jiang, Shiqi Wang, Yao Zhao and Sam Kwong

IEEE Transactions on Circuits and Systems for Video Technology, 2023

https://rmcong.github.io/proj_Hybrid-Label-SOD.html

Motivation

Full Supervised Pixel Wise Annotation

According to the given labeled data, weakly supervised/unsupervised SOD methods can be roughly divided into the following categories:

(c) Point Label

(a) RGB Image

(f) Coarse Label

- (d) Pixel-level Label
- (e) Image-level Label
- ✓ scribble label supervision
- ✓ point label supervision
- ✓ image-level label supervision
- ✓ coarse label supervision

Our Method

(a) A **simple solution** for training the SOD model with coarse and real labels. (b) The proposed alternate learning **framework** for weaklysupervised SOD task under the hybrid label, consisting of a Refine Network (R-Net) and a Saliency Network (S-**Net).** These two networks cooperate with each other and train alternately.

Refinement Network (R-Net)

Training Strategy

10

- We implement the proposed model via PyTorch toolbox and train it on an RTX 3090 GPU in my training strategy .
- Most of the previous state-of-the-art SOD models are trained on the large-scale DUTS dataset, which contains 10,553 training images (DUTS-TR) and 5,019 testing images (DUTS-TE).
- We use the MB method to generate the saliency maps (Coarse Label) for all the images in the DUTS-TR dataset.
- We select the first **1,000** samples in the DUTS-TR dataset as the **real-labeled** data, providing the **pixel-wise** real ground truth.

Experiments

			DUTS-TE		ECSSD		HKU-IS		PASCAL-S			THUR					
	SUP	YEAR	$F_{eta}^{max}\uparrow$	$S_m\uparrow$	$MAE\downarrow$	$F_{eta}^{max}\uparrow$	$S_m\uparrow$	$MAE\downarrow$	$F_{eta}^{max}\uparrow$	$S_m\uparrow$	$MAE\downarrow$	$F_{eta}^{max}\uparrow$	S_m \uparrow	$MAE\downarrow$	$F_{eta}^{max}\uparrow$	$S_m \uparrow$	$MAE\downarrow$
DGRL	F	2018	0.805	0.842	0.050	0.913	0.903	0.041	0.900	0.894	0.036	0.837	0.836	0.072	0.746	0.813	0.076
PiCANet	F	2018	0.840	0.863	0.040	0.928	0.916	0.035	0.913	0.905	<u>0.031</u>	0.848	0.846	0.065	-	-	-
PAGR	F	2018	0.816	0.838	0.056	0.904	0.889	0.061	0.897	0.887	0.048	0.822	0.819	0.092	0.769	0.830	0.070
MLMSNet	F	2019	0.825	0.861	0.049	0.917	0.911	0.045	0.910	0.906	0.039	0.841	0.845	0.074	0.752	0.819	0.079
CPD	F	2019	0.840	0.869	0.043	0.926	0.918	0.037	0.911	0.905	0.034	0.842	0.847	0.072	0.774	0.834	0.068
AFNet	F	2019	0.836	0.867	0.046	0.924	0.913	0.042	0.909	0.905	0.036	0.848	0.849	0.071	-	-	-
BASNet	F	2019	0.838	0.866	0.048	0.931	0.916	0.037	0.919	0.909	0.032	0.842	0.836	0.077	-	-	-
PFAN	F	2019	0.850	0.874	0.041	0.914	0.904	0.045	0.918	<u>0.914</u>	0.032	0.866	0.862	0.065	0.722	0.781	0.104
GCPANet	F	2020	0.866	0.891	0.038	<u>0.936</u>	0.927	0.035	0.926	0.920	<u>0.031</u>	<u>0.859</u>	0.866	0.062	0.784	0.840	0.070
MINet	F	2020	<u>0.863</u>	<u>0.881</u>	<u>0.039</u>	0.937	<u>0.923</u>	<u>0.036</u>	<u>0.922</u>	<u>0.914</u>	0.030	0.856	0.855	0.062	<u>0.778</u>	<u>0.836</u>	0.066
SVF	Un	2017	-	-	-	0.832	0.832	0.091	-	-	-	0.734	0.757	0.134	-	-	-
MNL	Un	2018	0.725	-	0.075	0.810	-	0.091	0.820	-	0.065	0.747	-	0.157	-	-	-
WSS	Ι	2017	0.633	-	0.100	0.767	-	0.108	0.773	-	0.078	0.697	-	0.184	-	-	-
ASMO	Ι	2018	0.568	-	0.115	0.762	-	0.068	0.762	-	0.088	0.653	-	0.205	-	-	-
MSW	Μ	2019	0.705	0.752	0.091	0.851	0.820	0.099	0.828	0.812	0.086	0.759	0.762	0.136	-	-	-
MFNet	Ι	2021	0.733	0.775	0.076	0.858	0.835	0.084	0.859	0.847	0.058	0.764	0.768	0.117	0.731	0.795	<u>0.075</u>
WSSD	Sub	2021	-	-	-	<u>0.873</u>	0.827	0.119	<u>0.884</u>	<u>0.870</u>	0.082	<u>0.820</u>	<u>0.814</u>	0.128	0.703	0.768	0.114
WSSA	S	2020	<u>0.755</u>	<u>0.803</u>	<u>0.062</u>	0.871	<u>0.865</u>	<u>0.059</u>	0.864	0.865	<u>0.047</u>	0.788	0.796	<u>0.094</u>	<u>0.736</u>	<u>0.800</u>	0.077
Ours	Н		0.803	0.837	0.050	0.899	0.886	0.051	0.892	0.887	0.038	0.827	0.828	0.076	0.755	0.813	0.069

Experiments

Contributions

- ✓ For the first time, we launch a new weakly-supervised SOD task based on hybrid labels, with a large number of coarse labels and a small number of real labels as supervision. To this end, we decouple this task into two sub-tasks of coarse label refinement and salient object detection, and design the corresponding R-Net and S-Net.
- ✓ We design a BGA in the R-Net to achieve two-stage feature decoding, where the guidance stage is used to introduce the guidance information from the RGB-image guidance branch to guarantee a relatively robust performance baseline, and the aggregation stage is to dynamically integrate different levels of features according to their modification or supplementation roles.
- ✓ In order to guarantee the effectiveness and efficiency of network training, from the perspective of quantity allocation, training method and reliability judgment, we design the alternate iteration mechanism, group-wise incremental mechanism, and credibility verification mechanism.

跨模态视觉显著性计算 SOD FOR CROSS-MODALITY DATA

RGB-D Salient Object Detection

.

R. Cong, et al. Cross-Modality Discrepant Interaction Network for RGB-D Salient Object Detection, ACM MM 2021

cross-modality interaction and refinement mode under three-stream structure

R. Cong, et al. CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient Object Detection, TIP 2022

DPANet: Depth Potentiality-Aware Gated Attention Network for RGB-D Salient Object Detection

Zuyao Chen‡, Runmin Cong‡, Qianqian Xu, and Qingming Huang

IEEE Transactions on Image Processing, 2021

https://rmcong.github.io/proj_DPANet.html

Motivations

Fig. 1. Sample results of our method compared with others. RGB-D methods are marked in **boldface**. (a) RGB image; (b) Depth map; (c) Ground truth; (d) **Ours**; (e) BASNet [14]; (f) **CPFP** [33].

- how to effectively integrate the complementary information from RGB image and its corresponding depth map;
- how to prevent the contamination from unreliable depth information;

Our Method

- Most previous works generally integrate the multi-modal features from RGB and corresponding depth information indiscriminately. However, there exist some contaminations when depth maps are unreliable.
- Since we do not hold any labels for depth map quality assessment, we model the depth potentiality perception as a saliency-oriented prediction task, that is, we train a model to automatically learn the relationship between the binary depth map and the corresponding saliency mask. The above modeling approach is based on the observation that if the binary depth map segmented by a threshold is close to the ground truth, the depth map is highly reliable, so a higher confidence response should be assigned to this depth input.

Gated Multi-modality Attention Module

- Directly integrating the cross-modal information may induce negative results, such as contaminations from unreliable depth maps. Besides, the features of the single modality usually are affluent in spatial or channel aspect with information redundancy.
- We design a GMA module that exploits the attention mechanism to automatically select and strengthen important features for saliency detection, and incorporate the gate controller into the GMA module to prevent the contamination from the unreliable depth map.

Gated Multi-modality Attention Module

single-modal perspective:

spatial attention

reduce the redundancy features and highlight the feature response on the salient regions cross-modal perspective:

two symmetrical attention sub-modules

capture long-range dependencies

$$\begin{aligned} \mathrm{rf}_{i} &= \widetilde{\mathrm{rb}}_{i} + g_{1} \cdot f_{dr} & g_{1} = \hat{g} \\ \mathrm{df}_{i} &= \widetilde{\mathrm{db}}_{i} + g_{2} \cdot f_{rd} & g_{1} + g_{2} = 1 \end{aligned}$$

Multi-level Feature Fusion

Multi-scale Feature Fusion

Low-level features can provide more detail information, such as boundary, texture, and spatial structure, but may be sensitive to the background noises. Contrarily, high-level features contain more semantic information, which is helpful to locate the salient object and suppress the noises. Thus, we adopt a more aggressive yet effective operation, i.e., multiplication.

$$\xrightarrow{\operatorname{rd}_5\operatorname{rf}_4}$$

$$f_{1} = \delta(up(conv_{3}(rd_{5})) \odot rf_{4})$$

$$f_{2} = \delta(conv_{4}(rf_{4}) \odot up(rd_{5}))$$

$$f_{F} = \delta(conv_{5}([f_{1}, f_{2}]))$$

• Multi-modality Feature Fusion

During the multi-modality feature fusion, we consider two issues: (1) How to select the most useful and complementary information from the RGB and depth features. (2) How to prevent the contamination caused by the unreliable depth map during fusing.

$$f_{3} = \boldsymbol{\alpha} \odot \operatorname{rd}_{2} + \hat{g} \cdot (1 - \boldsymbol{\alpha}) \odot \operatorname{dd}_{2}$$

$$f_{4} = \operatorname{rd}_{2} \odot \operatorname{dd}_{2}$$

$$f_{sal} = \delta(\operatorname{conv}([f_{3}, f_{4}]))$$

 α is the weight vector learned from RGB and depth information, \hat{g} is the learned weight of the gate as mentioned before.

The final loss is the linear combination of the classification loss and regression loss:

$$\mathcal{L}_{final} = \mathcal{L}_{cls} + \lambda \cdot \mathcal{L}_{reg}$$

classification loss:

$$\mathcal{L}_{cls} = \mathcal{L}_{cls} + \sum_{i=1}^{8} \lambda_i \cdot \mathcal{L}_{aux}^i$$

regression loss :

$$\mathcal{L}_{reg} = \begin{cases} 0.5(g-\hat{g})^2, & \text{if } |g-\hat{g}| < 1\\ |g-\hat{g}| - 0.5, & \text{otherwise} \end{cases}$$

Experiments

	RGE	3D135 D	ataset	S	SD Data	set	LE	SD Data	iset	NJUD-test Dataset		
Method	$F_{\beta} \uparrow$	$S_m \uparrow$	MAE	$F_{\beta} \uparrow$	$S_m \uparrow$	MAE	$F_{\beta} \uparrow$	$\frac{S_{m}}{S_{m}}$	MAE .L	$F_{\alpha} \uparrow$	$\frac{S_m}{S_m}$	MAE
DPANet (ours)	<u> </u>	0.022	0.023	0.805	0.877	0.046		0.862	0.074		0.022	0.035
AE Net (Arviv10)	0.955	0.922	0.023	0.828	0.815	0.040	0.000	0.802	0.001	0.931	0.922	0.053
DMPA (ICCV10)	0.904	0.092	0.035	0.828	0.815	0.077	0.857	0.810	0.091	0.900	0.880	0.053
CDED (CVDD10)	0.921	0.911	0.020	0.874	0.857	0.055	0.805	0.831	0.084	0.900	0.000	0.032
DCEN (CVDD18)	0.862	0.072	0.050	0.801	0.807	0.062	0.830	0.828	0.000	0.799	0.790	0.079
PDNet (ICME10)	0.042	0.045	0.030	0.843	0.845	0.005	0.829	0.800	0.112	0.007	0.877	0.059
TAN (TID10)	0.900	0.090	0.041	0.835	0.830	0.063	0.805	0.840	0.107	0.912	0.097	0.000
MMCI (DP10)	0.833	0.030	0.040	0.833	0.039	0.005	0.027	0.801	0.111	0.000	0.070	0.000
CTME (TC18)	0.859	0.040	0.005	0.823	0.815	0.062	0.815	0.707	0.152	0.808	0.039	0.079
PS (ICCV17)	0.805	0.805	0.053	0.755	0.770	0.100	0.815	0.790	0.120	0.057	0.049	0.085
$\frac{1}{1} = \frac{1}{1} $	0.041	0.024	0.033	0.765	0.750	0.107	0.795	0.739	0.150	0.790	0.741	0.120
PASNet (ICCVI9)	0.915	0.892	0.035	0.704	0.707	0.155	0.843	0.000	0.087	0.807	0.830	0.070
DASNEL (CVPR19)	0.910	0.894	0.030	0.842	0.851	0.001	0.802	0.854	0.084	0.890	0.878	0.034
AENet (CVDD 10)	0.907	0.885	0.035	0.764	0.749	0.110	0.847	0.850	0.095	0.874	0.800	0.008
AFINET ($CVPR19$)	0.897	0.878	0.035	0.847	0.859	0.058	0.841	0.817	0.094	0.890	0.880	0.055
PICAK (UVPK18)	0.907	0.890	0.036	0.864	0.871	0.055	0.849	0.834	0.104	0.887	0.882	0.060
R ^o Net (IJCAI18)	0.857	0.845	0.045	0.711	0.672	0.144	0.843	0.818	0.089	0.805	0.771	0.105
Mathad	NLF	R-test D	ataset	STER	REO797 I	Dataset	S	IP Datas	et	D	UT Data	aset
Method	$\frac{\text{NLP}}{F_{\beta}\uparrow}$	PR -test D $S_m \uparrow$	ataset MAE ↓	$\frac{\text{STER}}{F_{\beta}\uparrow}$	$\frac{\text{REO797 I}}{S_m \uparrow}$	Dataset MAE ↓	$F_{\beta}\uparrow$	SIP Datas $S_m \uparrow$	et MAE ↓	D $F_{\beta}\uparrow$	DUT Data $S_m \uparrow$	aset MAE↓
Method DPANet (ours)	$\frac{\text{NLF}}{F_{\beta}\uparrow}$ 0.924	PR-test D $S_m \uparrow$ 0.927	ataset MAE ↓ 0.025	$\begin{array}{c} \text{STER} \\ F_{\beta} \uparrow \\ \hline \textbf{0.919} \end{array}$	$\begin{array}{r} \text{REO797 I} \\ S_m \uparrow \\ \hline \textbf{0.915} \end{array}$	Dataset MAE ↓ 0.039	$F_{\beta} \uparrow$ 0.906	SIP Datas $S_m \uparrow$ 0.883	et MAE ↓ 0.052	$\begin{array}{c} & D \\ F_{\beta} \uparrow \\ \hline \textbf{0.918} \end{array}$	DUT Data $S_m \uparrow$	aset MAE ↓ 0.047
Method DPANet (ours) AF-Net (Arxiv19)	$ \begin{array}{r} \text{NLF} \\ F_{\beta} \uparrow \\ \hline \textbf{0.924} \\ 0.904 \end{array} $	PR-test D $S_m \uparrow$ 0.927 0.903	ataset MAE ↓ 0.025 0.032	STER $F_{\beta} \uparrow$ 0.919 0.905	$\begin{array}{r} \text{EO797 I} \\ S_m \uparrow \\ \hline \textbf{0.915} \\ 0.893 \end{array}$	Dataset MAE ↓ 0.039 0.047		$\frac{\text{SIP Datas}}{S_m \uparrow}$ 0.883 0.844	et MAE ↓ 0.052 0.071	$ \begin{array}{c} D \\ F_{\beta} \uparrow \\ \hline 0.918 \\ 0.862 \end{array} $	DUT Data $S_m \uparrow$ 0.904 0.831	aset MAE ↓ 0.047 0.077
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19)	NLF $F_{\beta} \uparrow$ 0.924 0.904 0.887	PR-test D $S_m \uparrow$ 0.903 0.889	ataset MAE ↓ 0.025 0.032 0.034	STER $F_{\beta} \uparrow$ 0.919 0.905 0.895	$ \begin{array}{r} \text{EO797 I} \\ S_m \uparrow \\ \hline 0.915 \\ 0.893 \\ 0.874 \\ \end{array} $	Dataset MAE ↓ 0.039 0.047 0.052	$ \begin{array}{c} S \\ F_{\beta} \uparrow \\ 0.906 \\ 0.870 \\ 0.883 \\ $		et MAE ↓ 0.052 0.071 0.063	$ \begin{array}{c} D \\ F_{\beta} \uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ \end{array} $	$\begin{array}{c} \text{DUT Data} \\ \hline S_m \uparrow \\ \hline 0.904 \\ \hline 0.831 \\ 0.880 \end{array}$	aset MAE ↓ 0.047 0.077 0.052
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19)	NLF $F_{\beta} \uparrow$ 0.924 0.904 0.887 0.888	PR-test D $S_m \uparrow$ 0.903 0.889 0.888	ataset MAE ↓ 0.025 0.032 0.034 0.036	STER $F_{\beta} \uparrow$ 0.905 0.895 0.815	$\begin{array}{r} \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline \textbf{0.915} \\ \hline 0.893 \\ 0.874 \\ 0.803 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082	$\begin{array}{c} & S \\ \hline F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ \end{array}$		et MAE ↓ 0.052 0.071 0.063 0.064	$\begin{array}{c} & D \\ F_{\beta} \uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ \end{array}$	DUT Data $S_m \uparrow$ 0.904 0.831 0.880 0.760	aset MAE ↓ 0.047 0.077 0.052 0.102
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18)	$ \begin{array}{c} \text{NLF} \\ F_{\beta} \uparrow \\ \hline 0.924 \\ 0.904 \\ 0.887 \\ 0.888 \\ 0.864 \end{array} $	$\begin{array}{r} \begin{array}{c} PR\text{-test } D\\ \hline S_m \uparrow \\ \hline 0.903\\ 0.889\\ 0.888\\ 0.874 \end{array}$	ataset MAE ↓ 0.025 0.032 0.034 0.036 0.044	STER $F_β$ ↑ 0.919 0.905 0.895 0.815 0.884	$\begin{array}{r} \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline \textbf{0.915} \\ \hline \textbf{0.893} \\ 0.874 \\ 0.803 \\ 0.880 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061	$ \begin{array}{c} S \\ F_{\beta} \uparrow \\ 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ - $		et MAE ↓ 0.052 0.071 0.063 0.064 -	$\begin{array}{c} & \\ & \\ \hline F_{\beta} \uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \end{array}$	$\begin{array}{c} \text{DUT Data} \\ \hline S_m \uparrow \\ \hline 0.904 \\ \hline 0.831 \\ 0.880 \\ 0.760 \\ 0.801 \end{array}$	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19)	$\begin{array}{c} \text{NLF} \\ F_{\beta} \uparrow \\ \hline 0.924 \\ 0.904 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \end{array}$	$\begin{array}{c} \begin{array}{c} PR\text{-test } D\\ \hline S_m \uparrow \\ \hline 0.903\\ 0.889\\ 0.888\\ 0.874\\ 0.902 \end{array}$	ataset MAE ↓ 0.025 0.032 0.034 0.036 0.044 0.042	STER $F_β$ ↑ 0.905 0.895 0.815 0.884 0.908	$\begin{array}{r} \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline 0.915 \\ \hline 0.893 \\ 0.874 \\ 0.803 \\ 0.880 \\ 0.886 \\ 0.896 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062	$ \begin{array}{c} & S \\ \hline F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ \hline - \\ 0.863 \end{array} $		et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091	$\begin{array}{c} & D \\ \hline F_{\beta} \uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \end{array}$	$\begin{array}{c} \text{DUT Data} \\ \hline S_m \uparrow \\ \hline 0.904 \\ \hline 0.831 \\ 0.880 \\ 0.760 \\ 0.801 \\ 0.859 \end{array}$	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.924 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ \end{array}$	$\begin{array}{r} & \begin{array}{r} PR\text{-test } D \\ \hline S_m \uparrow \\ \hline 0.903 \\ 0.889 \\ 0.888 \\ 0.874 \\ 0.902 \\ 0.886 \end{array}$	ataset MAE ↓ 0.032 0.034 0.036 0.044 0.042 0.041	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline \textbf{0.905} \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ \end{array}$	$\begin{array}{r} \hline \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline \textbf{0.915} \\ \hline \textbf{0.893} \\ 0.874 \\ 0.803 \\ 0.880 \\ 0.886 \\ 0.896 \\ 0.877 \\ \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059	$ \begin{array}{c} & S \\ \hline F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ \hline 0.863 \\ \hline \end{array} $		et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 -	$\begin{array}{c} & \\ & \\ \hline F_{\beta}\uparrow \\ \hline \textbf{0.918} \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \end{array}$	$\begin{array}{c} \text{DUT Data} \\ \hline S_m \uparrow \\ \hline 0.904 \\ 0.831 \\ 0.880 \\ 0.760 \\ 0.801 \\ 0.859 \\ 0.808 \end{array}$	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19) MMCI (PR19)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.924 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ 0.841 \end{array}$	$\begin{array}{r} & \label{eq:pressure} \mathbf{PR}\text{-test } \mathbf{D} \\ \hline & S_m \uparrow \\ \hline & 0.903 \\ & 0.889 \\ & 0.888 \\ & 0.874 \\ & 0.902 \\ & 0.886 \\ & 0.856 \end{array}$	ataset MAE ↓ 0.032 0.034 0.036 0.044 0.042 0.041 0.059	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline \textbf{0.905} \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ 0.861 \\ \end{array}$	$\begin{array}{r} \hline \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline \textbf{0.915} \\ \hline \textbf{0.893} \\ 0.874 \\ 0.803 \\ 0.880 \\ 0.880 \\ 0.896 \\ 0.877 \\ 0.856 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059 0.080	$ \begin{array}{c} & \\ F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ \hline \\ 0.863 \\ \hline \\ - \\ 0.863 \\ \hline \\ - \\ \end{array} $		et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 - -	$\begin{array}{c} & \\ & \\ \hline F_{\beta}\uparrow \\ \hline \textbf{0.918} \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \\ 0.804 \\ \end{array}$	$\begin{array}{c} \text{DUT Data} \\ \hline S_m \uparrow \\ \hline 0.904 \\ 0.831 \\ 0.880 \\ 0.760 \\ 0.801 \\ 0.859 \\ 0.808 \\ 0.791 \end{array}$	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093 0.113
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19) MMCI (PR19) CTMF (TC18)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.924 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ 0.841 \\ 0.841 \end{array}$	$\begin{array}{c} & \mathbf{PR}\text{-test } \mathbf{D} \\ \hline S_m \uparrow \\ \hline 0.903 \\ 0.889 \\ 0.888 \\ 0.874 \\ 0.902 \\ 0.886 \\ 0.856 \\ 0.856 \\ 0.860 \end{array}$	ataset MAE ↓ 0.032 0.034 0.036 0.044 0.042 0.041 0.059 0.056	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline 0.905 \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ 0.861 \\ 0.827 \end{array}$	$\begin{array}{r} \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline 0.915 \\ \hline 0.893 \\ 0.874 \\ 0.803 \\ 0.880 \\ 0.880 \\ 0.896 \\ 0.877 \\ 0.856 \\ 0.829 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059 0.080 0.102	$\begin{array}{c} & \\ F_{\beta}\uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ - \\ 0.863 \\ - \\ - \\ - \\ - \\ - \\ - \\ \end{array}$		et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 - - - -	$\begin{array}{c} & \\ & \\ \hline F_{\beta}\uparrow \\ \hline \textbf{0.918} \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \\ 0.804 \\ 0.842 \end{array}$	$\begin{array}{c} \text{DUT Data} \\ \hline S_m \uparrow \\ \hline 0.904 \\ 0.831 \\ 0.880 \\ 0.760 \\ 0.801 \\ 0.859 \\ 0.808 \\ 0.791 \\ 0.831 \end{array}$	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093 0.113 0.097
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19) MMCI (PR19) CTMF (TC18) RS (ICCV17)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.924 \\ 0.904 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ 0.841 \\ 0.841 \\ 0.900 \end{array}$	$\begin{array}{c} & eq:rest_rest_rest_rest_rest_rest_rest_rest_$	ataset MAE ↓ 0.032 0.034 0.036 0.044 0.042 0.041 0.059 0.056 0.039	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline 0.905 \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ 0.861 \\ 0.827 \\ 0.857 \\ \end{array}$	$\begin{array}{r} \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline 0.915 \\ \hline 0.893 \\ 0.874 \\ 0.803 \\ 0.880 \\ 0.896 \\ 0.877 \\ 0.856 \\ 0.829 \\ 0.804 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059 0.080 0.102 0.088	$\begin{array}{c} & \\ F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ - \\ 0.863 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 - - - - - -	$\begin{array}{c} & \\ & \\ \hline F_{\beta}\uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \\ 0.804 \\ 0.842 \\ 0.807 \\ \end{array}$	DUT Data $S_m \uparrow$ 0.904 0.831 0.880 0.760 0.801 0.859 0.808 0.791 0.831 0.797	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093 0.113 0.097 0.111
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19) MMCI (PR19) CTMF (TC18) RS (ICCV17) EGNet (ICCV19)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.904 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ 0.841 \\ 0.841 \\ 0.900 \\ \hline 0.845 \end{array}$	$\begin{array}{c} & PR\text{-test } D \\ \hline S_m \uparrow \\ \hline 0.903 \\ 0.889 \\ 0.888 \\ 0.874 \\ 0.902 \\ 0.886 \\ 0.856 \\ 0.860 \\ 0.864 \\ \hline 0.863 \end{array}$	ataset MAE ↓ 0.025 0.032 0.034 0.036 0.044 0.042 0.041 0.059 0.056 0.039 0.050	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline 0.919 \\ 0.905 \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ 0.861 \\ 0.827 \\ 0.857 \\ 0.872 \end{array}$	$\begin{array}{r} \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline 0.915 \\ \hline 0.893 \\ 0.874 \\ 0.803 \\ 0.880 \\ 0.880 \\ 0.896 \\ 0.877 \\ 0.856 \\ 0.829 \\ 0.804 \\ \hline 0.853 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059 0.080 0.102 0.088 0.067	$\begin{array}{c} & S \\ \hline F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ - \\ 0.863 \\ - \\ - \\ - \\ - \\ 0.863 \\ - \\ - \\ - \\ 0.846 \end{array}$		et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 - - - 0.083	$\begin{tabular}{ c c c c c } \hline D \\ \hline F_{\beta} \uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \\ 0.804 \\ 0.824 \\ 0.804 \\ 0.842 \\ 0.807 \\ 0.888 \end{tabular}$	$\begin{array}{c} \text{DUT Data} \\ \hline S_m \uparrow \\ \hline 0.904 \\ \hline 0.831 \\ 0.880 \\ 0.760 \\ 0.801 \\ 0.859 \\ 0.808 \\ 0.791 \\ 0.831 \\ 0.797 \\ \hline 0.867 \end{array}$	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093 0.113 0.097 0.111 0.064
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19) MMCI (PR19) CTMF (TC18) RS (ICCV17) EGNet (ICCV19) BASNet (CVPR19)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.904 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ 0.841 \\ 0.841 \\ 0.900 \\ \hline 0.845 \\ 0.882 \\ \end{array}$	$\begin{array}{r} & \begin{array}{r} PR\text{-test D} \\ \hline S_m \uparrow \\ \hline 0.903 \\ 0.889 \\ 0.888 \\ 0.874 \\ 0.902 \\ 0.886 \\ 0.856 \\ 0.860 \\ 0.866 \\ 0.864 \\ \hline 0.863 \\ 0.894 \end{array}$	ataset MAE ↓ 0.025 0.032 0.034 0.036 0.044 0.042 0.041 0.056 0.039 0.050 0.035	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline 0.905 \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ 0.886 \\ 0.861 \\ 0.827 \\ 0.857 \\ \hline 0.872 \\ 0.914 \end{array}$	$\begin{array}{r} \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline 0.915 \\ \hline 0.893 \\ 0.874 \\ 0.803 \\ 0.880 \\ 0.880 \\ 0.896 \\ 0.877 \\ 0.856 \\ 0.829 \\ 0.804 \\ \hline 0.853 \\ 0.900 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059 0.080 0.102 0.088 0.067	$\begin{array}{c} & & \\ \hline F_{\beta}\uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ - \\ 0.863 \\ - \\ - \\ 0.863 \\ - \\ - \\ 0.846 \\ 0.894 \end{array}$	$\begin{array}{r} \text{IP Datas} \\ \hline S_m \uparrow \\ \hline 0.883 \\ 0.844 \\ 0.850 \\ 0.850 \\ - \\ 0.843 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 - - - 0.083 0.055	$\begin{array}{c} & \\ & \\ \hline F_{\beta}\uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \\ 0.804 \\ 0.842 \\ 0.804 \\ 0.842 \\ 0.807 \\ \hline 0.888 \\ 0.912 \end{array}$	DUT Data S_m ↑ 0.904 0.831 0.880 0.760 0.801 0.859 0.808 0.791 0.831 0.797 0.867 0.902	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093 0.113 0.097 0.111 0.064 0.041
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19) MMCI (PR19) CTMF (TC18) RS (ICCV17) EGNet (ICCV19) BASNet (CVPR19) PoolNet (CVPR19)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.904 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ 0.841 \\ 0.841 \\ 0.900 \\ \hline 0.845 \\ 0.882 \\ 0.863 \\ \end{array}$	$\begin{array}{r} & \begin{array}{r} PR\text{-test D} \\ \hline S_m \uparrow \\ \hline 0.903 \\ 0.889 \\ 0.888 \\ 0.874 \\ 0.902 \\ 0.886 \\ 0.874 \\ 0.902 \\ 0.886 \\ 0.860 \\ 0.860 \\ 0.864 \\ \hline 0.863 \\ 0.894 \\ 0.873 \end{array}$	ataset MAE \downarrow 0.032 0.034 0.036 0.044 0.042 0.041 0.059 0.056 0.039 0.050 0.035 0.045	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline 0.905 \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ 0.861 \\ 0.827 \\ 0.857 \\ \hline 0.872 \\ 0.914 \\ 0.876 \end{array}$	$\begin{array}{r} \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline 0.915 \\ \hline 0.893 \\ 0.874 \\ 0.803 \\ 0.880 \\ 0.880 \\ 0.896 \\ 0.877 \\ 0.856 \\ 0.829 \\ 0.804 \\ \hline 0.853 \\ 0.900 \\ 0.854 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059 0.080 0.102 0.088 0.067 0.041	$\begin{array}{c} & S \\ \hline F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ - \\ 0.863 \\ - \\ - \\ 0.863 \\ - \\ - \\ 0.846 \\ 0.894 \\ 0.856 \end{array}$	$\begin{array}{r} \text{IP Datas} \\ \hline S_m \uparrow \\ \hline 0.883 \\ 0.844 \\ 0.850 \\ 0.850 \\ - \\ 0.843 \\ - \\ - \\ 0.843 \\ - \\ - \\ 0.843 \\ - \\ 0.836 \\ - \\ 0$	et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 - - - 0.083 0.055 0.079	$\begin{tabular}{ c c c c c } \hline D \\ \hline F_{\beta} \uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \\ 0.804 \\ 0.824 \\ 0.804 \\ 0.842 \\ 0.807 \\ 0.888 \\ 0.912 \\ 0.883 \end{tabular}$	DUT Data $S_m \uparrow$ 0.904 0.831 0.880 0.760 0.801 0.859 0.808 0.791 0.831 0.797 0.867 0.902 0.864	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093 0.113 0.097 0.111 0.064 0.041 0.067
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19) MMCI (PR19) CTMF (TC18) RS (ICCV17) EGNet (ICCV19) BASNet (CVPR19) PoolNet (CVPR19) AFNet (CVPR19)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.904 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ 0.841 \\ 0.900 \\ \hline 0.841 \\ 0.900 \\ \hline 0.845 \\ 0.882 \\ 0.863 \\ 0.865 \\ \hline \end{array}$	$\begin{array}{r} & \begin{array}{r} PR\text{-test D} \\ \hline S_m \uparrow \\ \hline 0.903 \\ 0.889 \\ 0.888 \\ 0.874 \\ 0.902 \\ 0.886 \\ 0.856 \\ 0.866 \\ 0.866 \\ 0.864 \\ \hline 0.863 \\ 0.894 \\ 0.873 \\ 0.881 \end{array}$	ataset MAE \downarrow 0.032 0.034 0.036 0.044 0.042 0.041 0.059 0.056 0.039 0.050 0.035 0.045	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline 0.905 \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ 0.861 \\ 0.827 \\ 0.857 \\ \hline 0.872 \\ 0.914 \\ 0.876 \\ 0.905 \end{array}$	$\begin{array}{r} \hline \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline \textbf{0.915} \\ \hline \textbf{0.893} \\ 0.874 \\ 0.803 \\ 0.874 \\ 0.803 \\ 0.876 \\ 0.877 \\ 0.856 \\ 0.877 \\ 0.856 \\ 0.829 \\ 0.804 \\ \hline \textbf{0.853} \\ 0.900 \\ 0.854 \\ 0.895 \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059 0.080 0.102 0.088 0.067 0.041 0.065 0.045	$\begin{array}{c} & S \\ \hline F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ - \\ 0.863 \\ - \\ - \\ 0.863 \\ - \\ - \\ 0.846 \\ 0.894 \\ 0.856 \\ 0.891 \\ \end{array}$	$\begin{array}{r} \hline \text{IP Datas} \\ \hline S_m \uparrow \\ \hline 0.883 \\ \hline 0.844 \\ 0.850 \\ 0.850 \\ \hline 0.843 \\ \hline - \\ 0.843 \\ \hline - \\ 0.843 \\ \hline 0.843 \\ \hline 0.870 \\ 0.825 \\ 0.872 \\ 0.836 \\ 0.876 \\ \end{array}$	et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 - - - 0.083 0.055 0.079 0.055	$\begin{array}{c} & \\ & \\ \hline \\ F_{\beta}\uparrow \\ \hline \\ 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \\ 0.804 \\ 0.842 \\ 0.804 \\ 0.842 \\ 0.807 \\ \hline \\ 0.888 \\ 0.912 \\ 0.883 \\ 0.880 \\ \end{array}$	DUT Data $S_m \uparrow$ 0.904 0.831 0.880 0.760 0.801 0.859 0.808 0.791 0.831 0.797 0.867 0.902 0.864 0.868	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093 0.113 0.097 0.111 0.064 0.041 0.067 0.065
Method DPANet (ours) AF-Net (Arxiv19) DMRA (ICCV19) CPFP (CVPR19) PCFN (CVPR18) PDNet (ICME19) TAN (TIP19) MMCI (PR19) CTMF (TC18) RS (ICCV17) EGNet (ICCV19) BASNet (CVPR19) PoolNet (CVPR19) AFNet (CVPR18)	$\begin{array}{c} \text{NLF} \\ \hline F_{\beta} \uparrow \\ \hline 0.904 \\ 0.887 \\ 0.888 \\ 0.864 \\ 0.905 \\ 0.877 \\ 0.841 \\ 0.900 \\ \hline 0.841 \\ 0.900 \\ \hline 0.845 \\ 0.882 \\ 0.863 \\ 0.865 \\ 0.872 \\ \end{array}$	$\begin{array}{r} & \begin{array}{r} PR\text{-test } D \\ \hline S_m \uparrow \\ \hline 0.903 \\ 0.889 \\ 0.888 \\ 0.874 \\ 0.902 \\ 0.886 \\ 0.856 \\ 0.860 \\ 0.866 \\ 0.863 \\ 0.864 \\ \hline 0.863 \\ 0.894 \\ 0.873 \\ 0.881 \\ 0.881 \\ 0.882 \end{array}$	ataset MAE \downarrow 0.032 0.034 0.036 0.044 0.042 0.041 0.056 0.039 0.050 0.035 0.045 0.042	$\begin{array}{c} \text{STER} \\ \hline F_{\beta} \uparrow \\ \hline 0.905 \\ 0.895 \\ 0.815 \\ 0.884 \\ 0.908 \\ 0.886 \\ 0.861 \\ 0.827 \\ 0.857 \\ \hline 0.872 \\ 0.914 \\ 0.876 \\ 0.905 \\ 0.906 \end{array}$	$\begin{array}{r} \hline \textbf{EO797 I} \\ \hline S_m \uparrow \\ \hline \textbf{0.915} \\ \hline \textbf{0.893} \\ 0.874 \\ 0.803 \\ 0.874 \\ 0.803 \\ 0.877 \\ 0.856 \\ 0.877 \\ 0.856 \\ 0.829 \\ 0.804 \\ \hline \textbf{0.853} \\ 0.900 \\ 0.854 \\ 0.895 \\ 0.903 \\ \end{array}$	Dataset MAE ↓ 0.039 0.047 0.052 0.082 0.061 0.062 0.059 0.080 0.102 0.088 0.067 0.041 0.065 0.045	$\begin{array}{c} & S \\ \hline F_{\beta} \uparrow \\ \hline 0.906 \\ 0.870 \\ 0.883 \\ 0.870 \\ - \\ 0.863 \\ - \\ - \\ 0.863 \\ - \\ 0.863 \\ 0.870 \\ 0.866 \\ 0.894 \\ 0.856 \\ 0.891 \\ 0.890 \end{array}$	$\begin{array}{r} \hline \text{IP Datas} \\ \hline S_m \uparrow \\ \hline 0.883 \\ \hline 0.844 \\ 0.850 \\ 0.850 \\ \hline 0.843 \\ \hline - \\ 0.843 \\ \hline - \\ 0.843 \\ \hline 0.843 \\ \hline 0.870 \\ 0.872 \\ 0.836 \\ 0.876 \\ 0.878 \end{array}$	et MAE ↓ 0.052 0.071 0.063 0.064 - 0.091 - - - 0.083 0.055 0.079 0.055 0.060	$\begin{array}{c} & \\ & \\ \hline P_{\beta}\uparrow \\ \hline 0.918 \\ 0.862 \\ 0.913 \\ 0.771 \\ 0.809 \\ 0.879 \\ 0.824 \\ 0.804 \\ 0.842 \\ 0.804 \\ 0.842 \\ 0.807 \\ \hline 0.888 \\ 0.912 \\ 0.883 \\ 0.880 \\ 0.903 \\ \end{array}$	DUT Data $S_m \uparrow$ 0.904 0.831 0.880 0.760 0.801 0.859 0.808 0.791 0.831 0.797 0.867 0.902 0.864 0.868 0.892	aset MAE ↓ 0.047 0.077 0.052 0.102 0.100 0.085 0.093 0.113 0.097 0.111 0.064 0.041 0.067 0.065 0.062

Experiments

Fig. 4. Qualitative comparison of the proposed approach with some state-of-the-art RGB and RGB-D SOD methods, in which our results are highlighted by a red box. (a) RGB image. (b) Depth map. (c) GT. (d) DPANet. (e) PiCAR. (f) PoolNet. (g) BASNet. (h) EGNet. (i) CPFP. (j) PDNet. (k) DMRA. (l) AF-Net.

- a) For the first time, we address the unreliable depth map in the RGB-D SOD network in an end-to-end formulation, and propose the DPANet by incorporating the depth potentiality perception into the cross-modality integration pipeline.
- **b)** Without increasing the training label (i.e., depth quality label), we model a taskorientated depth potentiality perception module that can adaptively perceive the potentiality of the input depth map, and further weaken the contamination from unreliable depth information.
- c) We propose a **gated multi-modality attention (GMA) module** to effectively aggregate the cross-modal complementarity of the RGB and depth images.
- d) Without any pre-processing or post-processing techniques, the proposed network **outperforms 16 state-of-the-art methods on 8 RGB-D SOD datasets** in quantitative and qualitative evaluations.

遥感数据视觉显著性计算 SOD FOR OPTICAL REMOTE SENSING DATA

Salient Object Detection in Optical RSIs

Challenges

Optical RSI may include diversely scaled objects, various scenes and object types, cluttered backgrounds, and shadow noises.

Sometimes, there is even no salient region in a real outdoor scene, such as the desert, forest, and sea.

RRNet: Relational Reasoning Network with Parallel Multiscale Attention for Salient Object Detection in Optical Remote Sensing Images

Runmin Cong, Yumo Zhang, Leyuan Fang, Jun Li, Yao Zhao, and Sam Kwong

IEEE Transactions on Geoscience and Remote Sensing, 2022

https://rmcong.github.io/proj_RRNet.html

Challenges

N 1901

- a) First, salient objects are often corrupted by background interference and redundancy.
- b) Second, salient objects in RSIs present much more complex structure and topology than the ones in NSIs, which poses new challenges in capturing complete object regions.
- c) Third, for the optical RSI SOD task, there is **only one dataset** (i.e., ORSSD [6]) available for model training and performance evaluation, which contains 800 images totally. This dataset is pioneering, but **its size is still relatively small**.

Fig. 1. Visual illustration of SOD results for optical RSIs by applying different methods. (a) Optical RSIs. (b) Ground truth. (c) PFAN [11]. (d) LVNet [6]. (e) Proposed DAFNet.

[6] C. Li, R. Cong, J. Hou, S. Zhang, Y. Qian, and S. Kwong, "Nested network with two-stream pyramid for salient object detection in optical remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 57, no. 11, pp. 9156–9166, 2019

Our Method

Relational Reasoning Encoder

 $\begin{aligned} & \textbf{Graph Construction} & \textbf{Graph Convolution} \\ & \tilde{\Lambda}(G^s) = diag(conv_{1\times 1}(avepool(G^s))) & \tilde{L} = I - \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} \\ & \tilde{A}_{ij} = (conv_{1\times 1}(G^s))_i \cdot \tilde{\Lambda}(G^s) \cdot (conv_{1\times 1}(G^s))_j^T & F_r^s = \sigma(\tilde{L}G^s\Theta) \end{aligned}$

We design a relational reasoning module in the **high-level layers** of the encoder stage to model the sematic relations and force the generation of complete salient objects. This is the **first attempt** to introduce relational reasoning in the SOD framework for optical RSIs. Moreover, we innovatively employ relational reasoning **along the spatial and channel dimensions jointly** to obtain more comprehensive semantic relations.

Multi-scale Attention Decoder

We propose a **parallel multi-scale attention** scheme in the **low-level layers** of the decoder stage to recover the detail information in a multi-scale and attention manner. This mechanism can deal with the **object scale variation** issue through the multi-scale design, while effectively recovering the **detail information** with the help of shallower features selected by the parallel attention.

Left Branch

Right Branch

$$\begin{aligned} A_{3\times3}^{s,l} &= \sigma(conv_{3\times3}(\Gamma^{s};\hat{\theta}_{3\times3})) \\ A_{5\times5}^{s,l} &= \sigma(conv_{5\times5}(\Gamma^{s};\hat{\theta}_{5\times5})) \\ A_{7\times7}^{s,l} &= \sigma(conv_{7\times7}(\Gamma^{s};\hat{\theta}_{7\times7})) \end{aligned} \qquad \begin{aligned} F_{3\times3}^{s} &= \sigma(conv_{3\times3}(X^{s};\hat{\omega}_{3\times3})), \\ F_{5\times5}^{s} &= \sigma(conv_{5\times5}(X^{s};\hat{\omega}_{5\times5})), \\ F_{7\times7}^{s} &= \sigma(conv_{7\times7}(X^{s};\hat{\omega}_{7\times7})), \end{aligned} \qquad \begin{aligned} F_{3\times3}^{s} &= \sigma(conv_{3\times3}(X^{s};\hat{\omega}_{3\times3})), \\ F_{5\times5}^{s} &= \sigma(conv_{5\times5}(X^{s};\hat{\omega}_{5\times5})), \\ F_{7\times7}^{s} &= \sigma(conv_{7\times7}(X^{s};\hat{\omega}_{7\times7})), \end{aligned} \qquad \begin{aligned} F_{3\times3}^{s} &= \sigma(conv_{5\times5}(X^{s};\hat{\omega}_{5\times5})), \\ F_{7\times7}^{s} &= \sigma(conv_{7\times7}(X^{s};\hat{\omega}_{7\times7})), \end{aligned} \qquad \end{aligned}$$

 $\begin{aligned} \textbf{Fusion} \\ A_{f}^{s} = \sigma(conv_{1\times 1}(concat(A_{l}^{s},A_{r}^{s}))) \end{aligned}$

Experiments

Image	GT	Ours	DAFNet	LVNet	MINet	GCPANet	F3Net	GateNet	СМС	PFAN	PoolNet
S Sa	~ '	`	. '	· *		. 4	`, d	7 •	Les	1.	
	\bullet					5					
	یک _{اگر م} ریامی	المدقوباتي	a. 30	5. 			السيحام	ر میلوندی		كالمعر	A.
	1 1	1, 1,	 	, , , , , , , , , , , , , , , , , , ,	1, I, I	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1,1,1	1,1	کل م	 	, ¹ ,
	* *	* *	* *	* *	* *	* *	* *	* *		* *	* *
-			1	7		F	7			*	1
+	+ +	* *	+ +	Ŧ	+	+	+ [*]	+	a a constantino de la	-	+",""
))) U	W a	113 14	94. ()	, 19 8	- M 8	10 1	• • • 10. d	Del	mu.

Experiments

$$F_{\beta} = \frac{(\beta^2 + 1) \cdot Precision \cdot Recall}{\beta^2 \cdot Precision + Recall},$$

$$MAE = \frac{1}{H \times W} \sum_{y=1}^{H} \sum_{x=1}^{W} |S(x, y) - G(x, y)|, \qquad S = \alpha * S_o + (1 - \alpha) * S_r,$$

		ORSSD	Dataset		EORSSD Dataset					
	F_{eta}	E_m	MAE	S_m	F_{eta}	E_m	MAE	S_m		
R3Net	.7698	.8907	.0409	.8092	.7989	.9547	.0170	.8305		
RADF	.7865	.9123	.0386	.8252	.7966	.9227	.0162	.8332		
PoolNet	.7911	.9604	.0358	.8403	.8012	.9358	.0209	.8301		
PFAN	.8344	.9418	.0543	.8613	.7931	.9334	.0156	.8446		
EGNet	.8585	.9727	.0215	.8780	.8310	.9600	.0109	.8692		
GateNet	.8794	.9464	.0197	.8853	.8618	.9440	.0131	.8710		
F3Net	.8661	.9433	.0215	.8949	.8681	.9487	.0119	.9040		
GCPANet	.8833	.9545	.0186	.8865	.8546	.9448	.0123	.8674		
MINet	.8751	.9423	.0171	.8865	.8510	.9354	.0104	.8909		
SMFF	.4764	.7518	.1897	.5329	.5693	.7892	.1471	.5431		
CMC	.4214	.7069	.1267	.6033	.3555	.6785	.1066	.5826		
LVNet	.8414	.9342	.0207	.8815	.8213	.9302	.0146	.8642		
DAFNet	.9192	.9699	.0105	.9188	.9060	.9684	.0053	.9185		
Ours	.9203	.9808	.0103	.9282	.9119	.9720	.0076	.9230		

TABLE II Ablation Analysis on the EORSSD Dataset.

Baseline	PMA	SRR	CRR	F_{β}	E_m	MAE	S_m
\checkmark				0.8302	0.9217	0.0148	0.8695
\checkmark	\checkmark			0.8819	0.9523	0.0105	0.9021
\checkmark	\checkmark	\checkmark		0.8947	0.9582	0.0091	0.9156
\checkmark	\checkmark	\checkmark	\checkmark	0.9119	0.9720	0.0076	0.9230

TABLE III FURTHER VALIDATION OF RR AND PMA ON THE EORSSD DATASET.

1	Modules	F_{eta}	E_m	MAE	S_m
fu	ıll model	0.9119	0.9720	0.0076	0.9230
RR	w/Non-local	0.9102	0.9691	0.0093	0.9225
РМА	w/o PMA(r)	0.9100	0.9707	0.0079	0.9227
	w/o PMA(l)	0.9037	0.9544	0.0089	0.9094

Contributions

- a) We propose a novel **end-to-end** relational reasoning network with parallel multiscale attention (RRNet) for SOD in optical RSIs, which consists of a **relational reasoning encoder** and a **multi-scale attention decoder**.
- b) We design a **relational reasoning module** in the high-level layers of the encoder stage to model the sematic relations and force the generation of complete salient objects. This is the **first attempt** to introduce relational reasoning in the SOD framework for optical RSIs. Moreover, we innovatively employ relational reasoning **along the spatial and channel dimensions jointly** to obtain more comprehensive semantic relations.
- c) We propose a **parallel multi-scale attention scheme** in the low-level layers of the decoder stage to **recover the detail information** in a multi-scale and attention manner. This mechanism can deal with the **object scale variation** issue through the multi-scale design, while effectively recovering the detail information with the help of shallower features selected by the parallel attention.

Future work

New attempts in learning based saliency detection methods, such as small samples training, un-supervised learning, and cross-domain learning.

Extending the saliency detection task in different data sources, such as light filed image, RGB-D video, and underwater image.

3

New ideas and solutions in saliency detection task, such as instance-level saliency detection and segmentation, saliency improvement and refinement.

为天下储人才

为国家图富强

机器智能与系统控制教育部重点实 Key Laboratory of Machine Intelligence & System Control, Ministry of Education

视觉感知与智能系统实验室成立于2013年9月,依托控制科学与技术国家A类学科,致力致力于智能系统感知、决 策与应用领域的研究,团队包括国家级特聘教授1人、国家四青人才3人、泰山学者6人、中国科协青托1人。目 前承担国家、省部级各类科研经费3000余万元,获得国内外学术奖励10余次。

李帅 教授/博导 齐鲁青年学者

中国科协青托

丛润民 教授/博导

李晓磊 副教授/硕 加州伯克利分校 博后 卡尔加里大学 博后

国家优青

贾潇 教授/博导

青年泰山

威志 副教授/硕导 /硕导 Pourva 副教授/硕导 法国国立科学院 博士 香港中文大学 博十 上海交诵大学 博十

张敬林 教授/博导 青年泰山

