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Introduction

Saliency Map

Recognition

Retargeting

—

Simulating the human visual attention mechanism, salient object detection aims at
detecting the salient regions automatically, which has been applied in image/video
segmentation, image/video retrieval, image retargeting, video coding, quality
assessment, action recognition, and video summarization.
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DPANet: Depth Potentiality-Aware Gated
Attention Network for RGB-D Salient
Object Detection

Zuyao Cheni, Runmin Congi, Qianqgian Xu, and Qingming Huang

IEEE Transaction on Image Processing, 2021

https://rmcong.github.io/proj_ DPANet.html
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Motivations

| B | 'f\"\' e X \_‘* :
Y i D ﬂ ﬂ
() (d) (e) )

(b

Fig. 1. Sample results of our method compared with others. RGB-D methods
are marked in boldface. (a) RGB image; (b) Depth map; (c¢) Ground truth;
(d) Ours; (e) BASNet [14]; (f) CPFP [33].

* how to effectively integrate the complementary information from RGB
image and its corresponding depth map;

* how to prevent the contamination from unreliable depth information;



Contributions

a)

b)

d)

For the first time, we address the unreliable depth map in the RGB-D SOD
network in an end-to-end formulation, and propose the DPANet by incorporating
the depth potentiality perception into the cross-modality integration pipeline.

Without increasing the training label (i.e., depth quality label), we model a task-
orientated depth potentiality perception module that can adaptively perceive the
potentiality of the input depth map, and further weaken the contamination from
unreliable depth information.

We propose a gated multi-modality attention (GMA) module to effectively
aggregate the cross-modal complementarity of the RGB and depth images.

Without any pre-processing or post-processing techniques, the proposed network
outperforms 16 state-of-the-art methods on 8 RGB-D SOD datasets in
guantitative and qualitative evaluations.



Our Method
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Depth Potentiality Perception

* Most previous works generally integrate the multi-modal features from RGB and
corresponding depth information indiscriminately. However, there exist some
contaminations when depth maps are unreliable.

* Since we do not hold any labels for depth map quality assessment, we model the
depth potentiality perception as a saliency-oriented prediction task, that is, we
train a model to automatically learn the relationship between the binary depth map
and the corresponding saliency mask. The above modeling approach is based on the
observation that if the binary depth map segmented by a threshold is close to the
ground truth, the depth map is highly reliable, so a higher confidence response
should be assigned to this depth input.

fr o-EC —>§depth potentiality learning D(i, G) — (1 + )/) * Dioy * Deov

--------------------------------------- Diou + Yy DCOU




Gated Multi-modality Attention Module
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* Directly integrating the cross-modal information may induce negative results, such as
contaminations from unreliable depth maps. Besides, the features of the single modality
usually are affluent in spatial or channel aspect with information redundancy.

 We design a GMA module that exploits the attention mechanism to automatically select and
strengthen important features for saliency detection, and incorporate the gate controller into
the GMA module to prevent the contamination from the unreliable depth map.
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Gated Multi-modality Attention Module
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Multi-level Feature Fusion

’-----------~

e Multi-scale Feature Fusion

Low-level features can provide more detail
information, such as boundary, texture, and
spatial structure, but may be sensitive to the
background noises. Contrarily, high-level
features contain more semantic information,
which is helpful to locate the salient object
and suppress the noises. Thus, we adopt a
more aggressive yet effective operation, i.e.,
multiplication.

fi=6 (up(conv3 (rdS)) O] rf4)

I‘IL]._-J 1‘f4

\—-----------'

—--------~

* Multi-modality Feature Fusion

During the multi-modality feature fusion, we
consider two issues: (1) How to select the
most useful and complementary information
from the RGB and depth features. (2) How to
prevent the contamination caused by the
unreliable depth map during fusing.

fai=a®rd; +§-(1—a)©dd;

fa =rd; O dd,
fsal = 5(C0n17([f3,f4]))

---------’

a is the weight vector learned from RGB and
depth information, g is the learned weight of
the gate as mentioned before.

f2 = 5(C07W4(1'f4) © up(rd;,))
fr = 5(C0nvs([f1»f2]))
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Loss Function

The final loss is the linear combination of the classification loss and regression loss:
Lfinal =L+ A+ Lreg

classification loss:

8
Leos = Les + z /11' ) Léux
=1

regression loss :

L — 0.5(g _g\)z’ if lg—gl <1
reg lg — g| — 0.5, otherwise



Experiments

 Benchmark Datasets: NJUD (1985 RGB-D images), NLPR (1000 RGB-D images), STEREO
(797 RGB-D images), LFSD (100 RGB-D images), SSD (80 RGB-D images), and DUT (1200
RGB-D images), RGBD135 (135 RGB-D images), SIP (929 RGB-D images).

* Evaluation Metrics: Precision-Recall (P-R) curve, F-measure, MAE score, and S-measure.

* Following [1], we take 1400 images from NJUD and 650 images from NLPR as the
training, and 100 images from NJUD dataset and 50 images from NLPR dataset as the
validation set. To reduce the overfitting, we use multi-scale resizing and random
horizontal flipping augmentation. During the inference stage, images are simply resized
to 256 X 256, and then fed into the network to obtain prediction without any other

post-processing or pre-processing techniques.

[1] H. Chen, et. al: Progressively complementarity-aware fusion network for RGB-D salient object detection. In: CVPR, 2018
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Fig. 4. Qualitative comparison of the proposed approach with some state-of-the-art RGB and RGB-D SOD methods, in which our results are highlighted by a
red box. (a) RGB image. (b) Depth map. (¢) GT. (d) DPANet. (e) PICAR. (f) PoolNet. (g) BASNet. (h) EGNet. (i) CPFP. (j) PDNet. (k) DMRA. (I) AF-Net.



Experiments

Method

RGBD135 Dataset

SSD Dataset

LESD Dataset

NJUD-test Dataset

TABLE III
COMPARISONS OF INFERENCE TIME OF DIFFERENT DEEP LEARNING

BASED RGB-D 50D METHODS.

Fﬁ T Sm T MAE Jr Fﬁ T Sm T MAE wlr Fﬁ T Sm T MAE wlr F;S T Sm T MAE -l'

DPANet (ours) 0933 0922 0.023 | 0.895 0.877 0046 | 0.880 0862 0.074 | 0931 0.922 0.035
AF-Net (Arxivl9) 0904 0892 0033 | 0828 0815 0.077 | 0857 03818 0.091 | 0900 0.883 0.053
DMRA (ICCV19) 0921 0911 0026 | 0874 0.857 0055 | 0.865 0831 0.084 | 0900 0.880 0.052
CPFP (CVPR19) 0.882 0872 0.038 | 0.801 0807 0082 | 0850 0828 0.088 | 0799 0.798 0.079
PCFN (CVPR18) 0.842 0843 0.050 | 0.845 0843 0.063 | 0.829 0.800 0.112 | 0.887 0877 0.059
PDNet (ICME19) 0906 0.896 0.041 | 0.844 0.841 0.089 | 0.865 0846 0.107 | 0912 0.897 0.060
TAN (TIP19) 0.853 0.858 0.046 | 0.835 0.839 0063 | 0827 0801 0.111 | 0.888 0.878 0.060
MMCI (PR19) 0.839 0.848 0.065 | 0823 0813 0082 | 0813 0787 0.132 | 0868 0.859 0.079
CTMF (TC18) 0.865 0.863 0.055 | 0755 0776 0.100 | 0.815 0796 0.120 | 0.857 0.849 0.085
RS (ICCV17) 0.841 0824 0053 | 0783 0750 0.107 | 0.795 0759 0.130 | 0796 0.741 0.120
EGNet (ICCV19) 0913 0892 0.033 | 0704 07707 0.135 | 0.845 0.838 0.087 | 0.867 0.856 0.070
BASNet (CVPR19) | 0916 0.894 0.030 | 0.842 0.851 0.061 | 0.862 0.834 0084 | 0.890 0.878 0.054
PoolNet (CVPR19) | 0907 0.885 0.035 | 0764 0749 0.110 | 0.847 0830 0.095 | 0.874 0.860 0.068
AFNet (CVPR19) 0.897 0.878 0035 | 0.847 0.859 0058 | 0.841 0.817 0094 | 0.890 0.880 0.055
PiCAR (CVPRIS) | 0907 0.890 0.036 | 0.864 0871 0.055 | 0849 0.834 0.104 | 0.887 0.882 0.060
R?Net (IJCAIIS) 0.857 0.845 0.045 0.711 0672 0.144 | 0.843 0818 0.089 | 0.805 0.771 0.105

NLPR-test Dataset

STEREQO797 Dataset

SIP Dataset

DUT Dataset

Method FyT SmT MAEL | F57 Smf MAEL | F3T Smf MAEL | F3T ST MAE]
DPANet (ours) 0.924 0.927 0.025 0.919 0915 0.039 0.906 0.883 0.052 0.918 0904 0.047
AF-Net (Arxivl9) 0.904 0903 0.032 0.905 0.893 0.047 0.870 0.844 0.071 0.862 0.831 0.077
DMRA (ICCV19) 0.887 0.889 0.034 0.895 0.874 0.052 0.883 0.850 0.063 0913 0.880 0.052
CPFP (CVPR19) 0.888 (0.888 0.036 0.815 0.803 0.082 0.870 0.850 0.064 0771 0760 0.102
PCEN (CVPRI18) 0.864 0.874 0.044 0.884 0.880 0.061 - - - 0.809 0.801 0.100
PDNet (ICME19) 0905 0902 0.042 0.908 0896 0.062 0.863  0.843 0.091 0.879 0.859 0.085
TAN (TIP19) 0.877 0.886 0.041 0.886 0.877 0.059 - - - 0.824 0.808 0.093
MMCI (PR19) 0.841 0.856 0.059 0.861 0.856 0.080 - - - 0.804 0.791 0.113
CTMF (TC18) 0.841 0.860 0.056 0.827 0.829 0.102 - - - 0.842  0.831 0.097
RS (ICCV17) 0.900 0.864 0.039 0.857 0.804 0.088 - - - 0.807 0.797 0.111
EGNet (ICCV19) 0.845 0.863 0.050 0.872 0.853 0.067 0.846 0.825 0.083 0.888 0.867 0.064
BASNet (CVPR19) 0.882 0.894 0.035 0.914 0900 0.041 0.894 0.872 0.055 0912 0902 0.041
PoolNet (CVPR19) 0.863 0.873 0.045 0.876  0.854 0.065 0.856 0.836 0.079 0.883 0.864 0.067
AFNet (CVPR19) 0.865 0.881 0.042 0.905 0.895 0.045 0.891 0.876 0.055 0.880 0.868 0.065
PiCAR (CVPR18) 0.872 0.882 0.048 0.906 0903 0.051 0.890 0.878 0.060 0903 0.892 0.062
R?Net (IICAIL8) 0.832 0.846 0.049 0.811 0754 0.107 0.641 0.624 0.158 0.841 0.812 0.079

CTMF | MMCI TAN PDNet | PCFN
Time (s) 0.63 0.05 0.07 0.07 0.06
3
CPFP | AF-Net | DMRA | D”Net Ours
Time (s) 0.17 0.03 0.06 0.05 0.03
TABLE 1V
ABLATION STUDIES ON NJUD-TEST, SIP, AND STEREO797 DATASETS.
NJUD-test Dataset SIP Dataset STEREO797 Dataset
FyT Suf MAEJ | Fsf Snf MAEL | F37 Snf MAE ]
DPANet 0.930 0.921 0.035 0.904 0.883 0.051 0.915 0911 0.041
concatenation 0.919 0914 0.039 0.904 0.876 0.056 0.912 0905 0.044
summation 0.923 0915 0.038 0.906 0.881 0.054 0.910 0904 0.045
hard manner 0.908 0.902 0.047 0.893 0.868 0.064 0.905 0.899 0.050
w/o depth 0.908 0.903 0.043 0.864 0.837 0.074 0.913 0908 0.042




Conclusion

We model a saliency-orientated depth potentiality perception module to evaluate

the potentiality of the depth map and weaken the contamination.

* We propose a GMA module to highlight the saliency response and regulate the

fusion rate of the cross-modal information.

* The multi-scale and multi-modality feature fusion are used to generate the

discriminative RGB-D features and produce the saliency map.

* Experiments on eight RGB-D datasets demonstrate that the proposed network

outperforms other 15 state-of-the-art methods under different evaluation metrics.
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Co-salient Object Detection

Problems and Important Issues

( )
how to explore and preserve inter-image correspondence among multiple

images to constrain the common properties of salient object is a challenge.
\_ J




CoADNet: Collaborative Aggregation-and-
Distribution Networks for Co-Salient
Object Detection

Qijian Zhang Runmin Cong* Junhui Hou Chongyili Yao Zhao

Conference on Neural Information Processing Systems (NeurlPS), 2020

https.//rmcong.qgithub.io/proj_CoADNet.html
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Motivations

EGNet GCPANet DIM

* Co-Salient Object Detection (CoSOD) aims at discovering the salient
objects that repeatedly appear in a query group containing two or
more relevant images.

 One challenging issue is how to effectively capture the co-saliency
cues by modeling and exploiting the inter-image relationships.



Motivations

Insufficient group-wise relationship modeling. The learned group representations
in the previous studies vary with different order of the input group images, leading
to unstable training and vulnerable inference.

Competition between intra-image saliency and inter-image correspondence. The
learned group semantics in the previous studies were directly duplicated and
concatenated with individual features. In fact, this operation implies that different
individuals receive identical group semantics, which may propagate redundant and
distracting information from the interactions among other images.

Weakened group consistency during feature decoding. In the feature decoding of
the CoSOD task, existing up-sampling or deconvolution based methods ignore the
maintenance of inter-image consistency, which may lead to the inconsistency of co-
salient objects among different images and introduce additional artifacts.



Contributions

7

.

\

The proposed CoADNet provides some insights and improvements in terms of modeling and
exploiting inter-image relationships in the CoSOD workflow, and produces more accurate and
consistent co-saliency results on four prevailing co-saliency benchmark datasets.

J

- aYa . .. : . : : N
We design an online intra-saliency guidance module for supplying saliency
1 prior knowledge, which is jointly optimized to generate trainable saliency
guidance information.
. J\ y,
r aYa . , N
We propose a two-stage aggregate-and-distribute architecture to learn
2 group-wise correspondences and co-saliency features, including a group-
attentional semantic aggregation and a gated group distribution module.
. J\ y,
4 \( . . : . : . )
A group consistency preserving decoder is designed to exploit more sufficient
3 inter-image constraints to generate full-resolution co-saliency maps while
. L maintaining group-wise consistency. )




Our Method

Query Group Shared Feature Extraction Online Intra-Saliency Guidance (OlaSG) Aggregate-and-Distribute Feature Decoding and Co-Saliency Prediction

o Co-saliency Maps

1
g oo -~
M

.l

.l

.l

:
)

i -

"

'

]

\
.l

.l

.l

"

S soo 13 B o I8
]

}SOD Samples [11] Saliency Maps ! i

[ ]
Y Group E§ SA  Spatial Attention Convolution Layers

N a E: GASA Semantics §i s

@ Channel Broadcasted
Multiplication

Down-sampling




Online Intra-Saliency Guidance

The challenges of CoSOD are that 1) the salient objects within an individual image
may not occur in all the other group images, and 2) the repetitive patterns are not
necessarily visually attractive, making it difficult to learn a unified representation to
combine these two factors. Thus, we adopt a joint learning framework to provide

trainable saliency priors as guidance information to suppress background
redundancy.

* Intra-saliency head (laSH) to infer online saliency
maps;

e Fuse online saliency priors with spatial feature in
an attention way;

* In this way, we obtain a set of intra-saliency "
features (laSFs) {UMIN_. with suppressed
background redundancy.




Group-Attentional Semantic Aggregation

To efficiently capture discriminative and robust group-wise relationships, we
investigate three key criteria:

1) Insensitivity to input order means that the learned group representations should
be insensitive to the input order of group images;

2) Robustness to spatial variation considers the fact that co-salient objects may be
located at different positions across images;

3) Computational efficiency takes the computation burden into account especially
when processing large query groups or high-dimensional features.

we propose a computation-efficient and order-insensitive group-
attentional semantic aggregation (GASA) module which builds local and
global associations of co-salient objects in group-wise semantic context.




Group-Attentional Semantic Aggregation
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Gated Group Distribution

The group-wise semantics encode the relationships of all images, which may include
some distracting information redundancy for co-saliency prediction of different images.

We propose a gated group distribution (GGD)
module to adaptively distribute the most
useful group-wise information to each
individual. To achieve this, we construct a
group importance estimator that Ilearns
dynamic weights to combine group semantics
with different [aSFs through a gating
mechanism.

XW=PpRG¢+(1-P)QUM

P=0 (fp (SE (Ué’”)))




Group Consistency Preserving Decoder

The most common up-sampling or deconvolution based feature decoders are not
suitable for CoSOD tasks because they ignore the inter-image constraints and may
weaken the consistency between images during the prediction process. Thus, we
propose a group consistency preserving decoder (GCPD) to consistently predict full-

resolution co-saliency maps.

e GCPD includes three cascaded feature
decoding (FD) units;

 Learn a compact group feature vector vy,
and combine it with the vectorized
deconvolution representations;

 The finest spatial resolution, which are
further fed into a shared co-saliency
head (CoSH) to generate full-resolution
co-saliency maps;

— Deconv — J—vgﬂ—h Cat MLP
Deconv EII’:‘ Cat MLP
Deconv ﬂ:m:ﬂ Cat MLP

— Deconv — » ‘jﬂ__-.- Cat MLP
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Supervisions

We jointly optimize the co-saliency and single image saliency predictions in a multi-
task learning framework.

L=a L.+ L,

co-saliency loss:
N
L, =-— (Z (TS - 1og(M™) + (1= T/™) - log(1 - M(">))) /N
n=1

auxiliary saliency loss:

L= — (ZK (Ts(k) - log(A(k)) + (1 - Ts(k)) -log(1 - A(k)))> /K
k=1



Experiments

* Benchmark Datasets: CoSOD3k, Cosal2015, MSRC, and iCoseg.

* Evaluation Metrics: Precision-Recall (P-R) curve, F-measure, MAE score, and S-
measure

* Implementation Details: a sub-group containing 5 images are randomly
selected from a certain query group. All input images are resized to 224
X 224. In each training iteration, 24 sub-groups from COCO-SEG and 64
samples from DUTS are simultaneously fed into the network for optimizing
the objective function. In our experiment, we provide the results under two
backbones including ResNet-50 and Dilated ResNet-50, and the training
process converges until 50,000 iterations. The average inference time for a
single image is 0.07 seconds.
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Experiments

Cosal2015 Dataset

CoSOD3k Dataset

MSRC Dataset

1Coseg Dataset

Fg T

MAE |

Sm 1

s 1

MAE |

Sm T

Fs T

MAE |

S‘F]’L T

Fg T

MAE |

Sm 1

CPD [17]
EGNet [5¢]
GCPANet [5]

0.8228
0.8281
0.8557

0.0976
0.0987
0.0813

0.8168
0.8206
0.8504

0.7661
0.7692
0.7808

0.1068
0.1061
0.1035

0.7788
0.7844
0.7954

0.8250
0.8101
0.8133

0.1714
0.1848
0.1487

0.7184
0.7056
0.7575

0.8768
0.8880
0.8924

0.0579
0.0601
0.0468

0.8565
0.8694
0.8811

UMLF [20]
CODW [53]
DIM [25]
GoNet [23]
CSMG [54]
RCGS [47]
GCAGC [55]

0.7298
0.7252
0.6363
0.7818
0.8340
0.8245
0.8666

0.2691
0.2741
0.3126
0.1593
0.1309
0.1004
0.0791

0.6649
0.6501
0.5943
0.7543
0.7757
0.7958
0.8433

0.6895

0.5603

0.7641

0.8066

0.2774

0.3267

0.1478

0.0916

0.6414

0.5615

0.7272

0.7983

0.8605
0.8020
0.7419
0.8598
0.8609
0.7692
0.7903

0.1815
0.2645
0.3101
0.1779
0.1892
0.2134
0.2072

0.8007
0.7152
0.6579
0.7981
0.7257
0.6717
0.6768

0.7623
0.8271
0.8273
0.8653
0.8660
0.8005
(0.8823

0.2389
0.1782
0.1739
0.1182
0.1050
0.0976
0.0773

0.6828
0.7510
0.7594
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Figure 6: Visualization of different ablative results. From left to right: Input image group, Ground
truth, Co-saliency maps produced by the Baseline, Baseline+OIaSG, Baseline+OlaSG+GASA,
Baseline+OIaSG+GASA+GGD, and the full CoADNet.
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Table 3: Detection performance of our CoADNet-V using CoSOD3k as the training set.

Cosal2015 Dataset

MSRC Dataset

1Coseg Dataset

Fg 1

MAE |

S T

Fg 1

MAE |

Sm T

Fp T

MAE |

Sm T

CoADNet-V

0.8592

0.0818

0.8454

0.8347

0.1558

0.7670

0.8784

0.0725

0.8569

We need an appropriate dataset

to train our CoSOD network!!



Conclusion

* We proposed an end-to-end CoSOD network by investigating how to model and
utilize the inter-image correspondences.

 We first decoupled the single-image SOD from the CoSOD task and proposed an
OlaSG module to provide learnable saliency prior guidance.

* Then, the GASA and GGD modules are integrated into a two-stage aggregate-and-
distribute structure for effective extraction and adaptive distribution of group
semantics.

* Finally, we designed a GCPD structure to strengthen inter-image constraints and
predict full-resolution co-saliency maps.

 Experimental results and ablative studies demonstrated the superiority of the
proposed CoADNet and the effectiveness of each component.



Salient Object Detection in Optical RSIs

Challenge2

s

\.

Optical RSI may include diversely
scaled objects, various scenes and
object types, cluttered backgrounds,
and shadow noises.

Sometimes, there is even no salient
region in a real outdoor scene, such
as the desert, forest, and sea.

~
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Challenges

a) First, salient objects are often corrupted by
background interference and redundancy.

b) Second, salient objects in RSIs present much
more complex structure and topology than the
ones in NSIs, which poses new challenges in
capturing complete object regions.

c) Third, for the optical RSI SOD task, there is only
one dataset (i.e., ORSSD [6]) available for model
training and performance evaluation, which

(a) (b) (c) (d) (e)

contains 800 images totally. This dataset is
Fig. 1. Visual illustration of SOD results for optical RSIs by applying different

pioneering’ but its size is Sti" relatively smaII. methods. (a) Optical RSIs. (b) Ground truth. (c) PFAN [11]. (d) LVNet [6].
(e) Proposed DAFNet.

[6] C. Li, R. Cong, J. Hou, S. Zhang, Y. Qian, and S. Kwong, “Nested network with two-stream pyramid for salient object detection in optical remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 11, pp. 9156-9166, 2019



Contributions

b)

d)

An end-to-end Dense Attention Fluid Network (DAFNet) is proposed to achieve
SOD in optical RSIs, equipped with a Dense Attention Fluid (DAF) structure
decoupled from the backbone feature extractor and a Global Context-aware
Attention (GCA) mechanism.

The DAF structure is designed to combine the multi-level attention cues, where
shallow-layer attention cues flow into the attention units of deeper layers so that
low-level attention cues could be propagated as guidance information to enhance
the high-level attention.

The GCA mechanism is proposed to model the global context semantic
relationships by a global feature aggregation module, and tackle the scale
variation by a cascaded pyramid attention module.

A large-scale benchmark dataset including 2, 000 images and corresponding pixel-
wise annotations is constructed for SOD in optical RSIs. The proposed DAFNet
consistently outperforms 15 state-of-the-art competitors in the experiments.



Our Method

Saliency Map

-

!

=
=

Side Output

Side Output

Attention Fluid Guided Feature Encodlng

Progressive Feature Decoding

Salient Edge Map

Backbone
Convolution Block
Decoder
CB Convolution Block
Top-down
FF Feature Fusion
GCA Global Context-
aware Attention
RC Residual Connection
r Prediction Layer
Y \ Skip Connection
e Information Flow
S ———



Attention Fluid Guided Feature Encoding

o The attention fluid guided feature encoding consists of:

o a feature fluid that generates hierarchical feature representations with
stronger discriminative ability by incorporating attention cues mined

from the corresponding global context-aware attention modules.

¢ an attention fluid where low-level attention maps flow into deeper

layers to guide the generation of high-level attentions .



Global Context-aware Attention Mechanism

o We investigate a novel global context-aware attention (GCA) mechanism that
explicitly captures the long-range semantic dependencies among all spatial locations
in an attention manner. The GCA module consists of two main functional
components:

¢ The global feature aggregation (GFA) module consumes raw side features
generated from the backbone convolutional block and produces aggregated
features that encode global contextual information.

¢ The cascaded pyramid attention (CPA) module is used to address the scale
variation of objects in optical RSls, which takes the aggregated features from
GFA as input and produces a progressively refined attention map under a
cascaded pyramid framework.



Global Context-aware Attention Mechanism

® Global Feature Aggregation

o The GFA module aims to achieve feature alignment and mutual reinforcement
between saliency patterns by aggregating global semantic relationships among pixel

pairs, which is beneficial to generate intact and uniform saliency map.
o Aggregated feature map F° with global contextual dependencies:
F°=f*4+6-(f°OG6)
o Refined feature map F; with more compact channel information:

EgS:FS@FS



Global Context-aware Attention Mechanism

® Cascaded Pyramid Attention

o We design a cascaded pyramid attention to m @w """"
progressively refine both features and ¢ . __,__.
attentive cues from coarse to fine. ” E O oY D)

o The CPA module produces a full-resolution F: fa %_‘
attention map A® at the original feature ]| [ P\ w— u

F; Attention Map

scale, which can be formulated as:

AS = Att(concat(Fg , (Fg, ®|Ag|+ Fg,) D)

}

AS = Att(F"j) — 0 (conv (concat (avepool(F"j),maxpool(EgS)) ; é))




Dense Attention Fluid Structure

o Each GCA module consumes a raw side feature map f°, and produces an attention
map AS.

o First, we build sequential connections among the attention maps generated from
hierarchical feature representations. Moreover, considering the hierarchical
attention interaction among different levels, we add feed-forward skip connections
to form the attention fluid. Formally, the above updating process is denoted as:

AS « o(conv(concat((AH) L, ..., (A5~1) L, 4%)))

o With the updated attention map, the final feature map at the st"* convolution stage

E?> can be generated via the residual connection:

Z = concat(F3 ,(F5,:,) T ® (AS + 0%)



Progressive Feature Decoding

O

Each decoding stage consists of three procedures.

First, we employ top-down feature fusion (FF) to align the spatial resolution and
number of channels between adjacent side feature maps via up-samplingand 1 X 1

convolution, and then perform pointwise summation.

Second, a bottleneck convolutional block (CB) is deployed to further integrate

semantic information from fusion features.

Third, we deploy a mask prediction layer and an edge prediction layer for the
decoded features, and use a Sigmoid layer to map the range of saliency scores into
[0, 1].

The final output of our DAFNet is derived from the predicted saliency map at the top

decoding level.



Loss Function

o To accelerate network convergence and vyield more robust saliency feature
representations, we formulate a hierarchical optimization objective by applying
deep supervisions to the side outputs at different convolution stages. We further

introduce edge supervisions to capture fine-grained saliency patterns and enhance
the depiction of object contours.

3
£=Z(w,€nﬁ+wg-
s=1

class-balanced binary class-balanced binary
cross-entropy loss cross-entropy loss
function for saliency function for salient edge

supervision supervision



EORSSD Dataset

Fig. 4.

Visualization of the more challenging EORSSD dataset. The first row shows the optical RSI, and the second row exhibits the corresponding ground

truth. (a) Challenge in the number of salient objects. (b) Challenge in small salient objects. (c) Challenge in new scenarios. (d) Challenge in interferences
from imaging. (e) Challenge in specific circumstances.
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Statistical analysis of EORSSD dataset. (a) Type analysis of salient object. (b) Number analysis of salient object. (c) Size analysis of salient object.

Download: https://github.com/rmcong/EORSSD-dataset
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Experiments

Optical RSIs GT Ours RCRR ADF PF/\\ Pool’\let E Gl\et CMC LVNet TABLE 1

% )
. QUANTITATIVE COMPARISONS WITH DIFFERENT METHODS ON THE
. TESTING SUBSET OF THE ORSSD AND EORSSD DATASETS. TOP THREE
- K‘-K‘“ < m- 7 RESULTS ARE MARKED IN RED, BLUE, AND RESPECTIVELY.

ORSSD Dataset EORSSD Dataset
Fg1? |[MAEL| Sm 1 || Fg1 [MAEL| Sp t
DSG [26] | 0.6630 | 0.1041 | 0.7195 || 0.5837 | 0.1246 | 0.6428
RRWR [25] | 0.5950 | 0.1324 | 0.6835 || 0.4495 | 0.1677 | 0.5997
HDCT [22] |0.5775 | 0.1309 | 0.6197 || 0.5992 | 0.1087 | 0.5976
SMD [22] | 0.7075 | 0.0715 | 0.7640 || 0.6468 | 0.0770 | 0.7112
RCRR [21] | 0.5944 | 0.1277 | 0.6849 || 0.4495 | 0.1644 | 0.6013
DSS [24] | 0.7838 | 0.0363 | 0.8262 || 0.7158 | 0.0186 | 0.7874
R3Net [27] | 0.7998 | 0.0399 | 0.8141 || 0.7709 | 0.0171 | 0.8193
RADF [29] | 0.7881 | 0.0382 | 0.8259 || 0.7810 | 0.0168 | 0.8189
PFAN [11] |0.8344 | 0.0543 | 0.8613 || 0.7740 | 0.0159 | 0.8361
PoolNet [9] | 0.7911 | 0.0358 | 0.8403 || 0.7812 | 0.0209 | 0.8218

EGNet [16] 0.0216 | 0.8721 0.8602
TABLE V CMC [46] | 0.4214 | 0.1267 | 0.6033 || 0.3663 | 0.1057 | 0.5800
QUANTITATIVE EVALUATION OF ABLATION STUDIES ON THE TESTING VOS [45] [0.4168 | 0.2151 | 0.5366 || 0.3599 | 0.2096 | 0.5083
SUBSET OF EORSSD DATASET. SMFF [11] | 0.4864 | 0.1854 | 0.5312 |[ 0.5738 | 0.1434 | 0.5405
. LVNet [6] | 0.8414 0.8051 | 0.0145
Baseline GFA CPA DAF | Fp MAE _ Sm DAFNet-V | 0.9174 | 0.0125 | 0.9191 || 0.8922 | 0.0060 | 0.9167
v 0.8391  0.0125  0.8432 DAFNet-R | 0.9235 | 0.0106 | 0.9188 || 0.9060 | 0.0053 | 0.9185
v v 0.8504 0.0098 0.8661
v v v 0.8742 0.0083 0.8760
v v v v | 0.8922 0.0060 0.9167




Conclusion

* This paper focuses on salient object detection in optical remote sensing images and
proposes an end-to-end encoder-decoder framework dubbed as DAFNet, in which
attention mechanism is incorporated to guide the feature learning.

* Benefiting from the attention fluid structure, our DAFNet learns to integrate low-
level attention cues into the generation of high-level attention maps in deeper
layers. Moreover, we investigate the global context-aware attention mechanism to
encode long-range pixel dependencies and explicitly exploit global contextual
information. In addition, we construct a new large-scale optical RSI benchmark
dataset for SOD with pixel-wise saliency annotations.

* Extensive experiments and ablation studies demonstrate the effectiveness of the
proposed DAFNet architecture.



Future work

————————————————————————————————————————————————————————————————————————————————————————————

\\

i New attempts in learning based saliency detection methods, such as small |
i samples training, weakly supervised learning, and cross-domain learning. i
-------------------------------------------------------------------------------------------- \}

| Extending the saliency detection task in different data sources, such as light filed |
: image, RGB-D video, and remote sensing image. !
\ g
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' \}

i New ideas and solutions in saliency detection task, such as instance-level |
i saliency detection and segmentation, saliency improvement and refinement. ]
L !
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