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Introduction —— Transient → Continual Learning

As shown in the above image, a conventional model can only be trained once and has 
fixed capabilities. In contrast, a model with continual learning abilities can 
continuously expand its capabilities to meet new requirements.
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小样本

新类别学习
小样本学习

小模型

小模型语义理解
持续学习

Introduction —— Transient → Continual Learning

全监督

当前类别学习
全监督学习

瞬态学习 持续学习
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Introduction —— Continual Learning

Ø Continual Learning refers to the ability of a model to 
retain previously learned knowledge while 
continuously receiving new data and acquiring new 
knowledge. The main challenge is to avoid 
“Catastrophic Forgetting”.

Ø As shown in the above image, a conventional model 
can only be trained once and has fixed capabilities. In 
contrast, a model with continual learning abilities can 
continuously expand its capabilities to meet new 
requirements.

Ø The methods for continual learning can be broadly 
categorized into regularization, replay, and parameter 
isolation.

Conventional Model

Continual Learning Model
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Jinpeng Chen, Runmin Cong, Yuxuan Luo, Horace Ip, and Sam Kwong

Saving 100x Storage: Prototype Replay for 
Reconstructing Training Sample Distribution in Class-

Incremental Semantic Segmentation

Replay Without Saving: 
Prototype Derivation and Distribution Rebalance for 

Class-Incremental Semantic Segmentation

NeurIPS 2023 → TPAMI 2025



Task Definition
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Ø In class-incremental semantic segmentation (CISS), each step focuses on different
classes, with its training set only annotates current classes, while previously learned
classes and future classes are labeled as background.

Ø The images in each single-step training set contain at least one pixel from current
classes, and images devoid of any current class are excluded.



Motivation
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Ø There are a lot of false positives for classes in incremental steps (i.e.,
steps beyond the first).

Ø This is because the proportion of current classes in the single-step
training set is significantly higher than in the complete dataset,
leading to classification bias, which is especially pronounced in
incremental steps with fewer classes.

To address this issue, the key is to augment past classes and background
pixels in the training samples of the incremental steps, thereby reducing
the proportion of the current class. At the same time, it is important to
avoid triggering excessive storage requirements.



Solution

Prototype Replay

At each task, the pixel occurrence count 
for each class is recorded. In subsequent 
tasks, pixel-level class prototypes are 
replayed based on these occurrence 
counts.
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Background Repetition

At each task, the cumulative pixel count 
of the background class is updated. In 
subsequent tasks, background features 
are duplicated according to this count.

These two strategies respectively adjust the proportion of foreground 
and background classes within the single-step training samples to match 
the proportion in the “cumulative training set up to the current step”, 
thus avoiding bias.



Contributions
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Ø We propose a new CISS method named STAR. Its basic version stores compact 

prototypes and necessary statistics for each learned class. This enables a 
comprehensive reconstruction of single-task training sample distributions, aligning 
them with the complete dataset to mitigate classification bias.

Ø We develop a prototype derivation method that considers both the recognition and 
extraction patterns of the network. This empowers prototype creation without the 
need for storage, leading to a lite version.

Ø The OCFM loss is introduced to retain learned knowledge in a spatially targeted 

manner, maintaining old-class features while ensuring flexibility for learning new 
classes. Additionally, the SAD loss is designed to enhance the feature 
discriminability between similar old-new class pairs, facilitating the classification.



Our STAR Method
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https://github.com/jinpeng0528/STAR

https://github.com/jinpeng0528/STAR


Prototype Replay – Basic Version
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• After the learning of each task, all training samples in this task are passed 
through the frozen model to compute the features.

• The feature centers are stored as prototypes and replayed in subsequent tasks.

• Since prototypes are highly compact, they require only 1/100 of the storage 
compared to existing replay-based methods that storing raw images.



Prototype Replay – Lite Version
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Recognition Patterns
The classifier is isolated from the network. 
Then, it is used to infer representative 
features of previous classes, forming the
recognition-side prototype.

By leveraging the network’s classification recognition and feature extraction patterns, 
prototypes are derived without the need for any storage.

Extraction Patterns
Images from the current task are fed into 
the network, and features from regions 
predicted as belonging to previous classes 
are aggregated to construct the
extraction-side prototypes.



Background Repetition
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Ø Starting from the first step, we record and update the cumulative occurrence 
count of background pixels, 𝜂!". 

Ø In subsequent steps, the background regions of input images are filtered out 
using current annotations and predictions from the previous model.

Ø The features of these background regions are repeated multiple times and fed 
into the classifiers to add 𝜼𝒃𝒈  extra background pixels, thus aligning the 
proportion of background in the single-step training samples with that of 
the ”cumulative training set up to the current step”.



Old-Class Feature Maintaining Loss
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Ø A crucial prerequisite for effective prototype 
replay is the relative stability of old-class feature 
space.

Ø The old-class feature-maintaining loss utilizes 
current labels and predictions from the previous 
model to locate old-class regions. Within these 
regions, it constrains the features extracted by 
the current model to be close to those 
extracted by the previous model.



Similarity-Aware Discriminative Loss
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Ø Some similar "new-old class pairs" are prone to confusion 
because they appear in different steps, making it 
challenging for the feature extractor to generate 
discriminative features.

Ø The most direct approach is to penalize the similarity of 
all "new-old class pairs" feature centers, increasing their 
distance. 

Ø However, this method may lead to resource waste as 
some "new-old class pairs" are inherently dissimilar. 
Therefore, we penalize the similarity between each new 
class feature center and its closest old class feature 
center, focusing on the most challenging points.



Experiments
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Pascal VOC 2012 Dataset - 1

ADE20K Dataset

CityScapes Dataset
STAR-Basic: Save 100x Storage Cost
STAR-Lite: Replay Without Any Storage

Pascal VOC 2012 Dataset - 2



Experiments
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Ablation Study
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PR: Prototype Replay

BPR: Background Pixel Repetition

OCFM: Old-Class Features Maintaining Loss

SAD: Similarity-Aware Discriminative Loss

Ablation Study Results

STAR-Lite

STAR-Basic



Conclusion
• This paper introduces STAR, a CISS method designed to mitigate classification bias arising 

from distribution variances between single-task training sets and the complete dataset.

• STAR employs two principal tactics: prototype replay and background pixel repetition. The 
former rectifies the distribution of foreground classes by replaying old-class prototypes, while 
the latter reintegrates missing background pixels by duplicating background pixels.

• Regarding the creation of prototypes, STAR diverges into two variants. STAR-Basic stores 
prototypes after learning each task for future replay, whereas STAR-Lite employs a novel 
prototype derivation method that considers the network's recognition and extraction patterns 
to deduce prototypes. 

• The OCFM loss is introduced to maintain the features of old classes, ensuring the model's 
ability to learn new classes without losing prior knowledge. Additionally, the SAD loss is 
proposed to enhance feature differentiation between similar old and new class pairs, 
improving their distinguishability for the classifiers.

20



SEFE: Superficial and Essential 
Forgetting Eliminator for Multimodal 

Continual Instruction Tuning

ICML 2025

Jinpeng Chen, Runmin Cong, Yuzhi Zhao, Hongzheng Yang, Guangneng Hu, 
Horace Ho Shing Ip, and Sam Kwong



Introduction

Ø In Multimodal Continual Instruction Tuning (MCIT), a pretrained 
Multimodal Large Language Model (MLLM) is sequentially tuned on a 
series of multimodal tasks, aiming to learn new tasks while minimizing 
forgetting of previously learned ones.
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Pretrained MLLM
Question: What force from 
the baby’s hand opens the 
cabinet door?

VQA
Question: Please provide 
the bounding box for the 
black cat.

Grounding
Question: Please classify 
this image according to 
the ImageNet taxonomy.

Classification



Introduction
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Does the forgetting problem become more severe or alleviated for 
large and small models under continual learning architectures?



Introduction
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Does the forgetting problem become more severe or alleviated for 
large and small models under continual learning architectures?



Contributions
a) We formally define superficial forgetting and essential forgetting in MCIT. 

Furthermore, our proposed method, SEFE, addresses these challenges and 
achieves state-of-the-art performance.

b) To mitigate superficial forgetting, we introduce the Answer Style 
Diversification (ASD) paradigm that unifies the answer domain across tasks 
by rephrasing questions, thereby reducing the model’s bias toward specific 
response styles. Additionally, we create CoIN-ASD, an ASD-adjusted version 
of the CoIN benchmark, which can serve as a new benchmark for evaluating 
essential forgetting in future MCIT studies.

c) To address essential forgetting, we present RegLoRA. By identifying critical 
elements in the weight update matrices and applying regularization 
constraints, RegLoRA ensures that LoRA fine-tuning does not disrupt the 
model’s existing knowledge. 25



Forgetting Types

ØSuperficial Forgetting: task knowledge may be retained while the 
response style is forgotten.

ØEssential Forgetting: task knowledge is forgotten.
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Answer Style Diversification

Ø Superficial forgetting arises from the gap in answer space between tasks, 
as the model tends to respond in the answer style of the most recently 
learned task. 

Ø To address this issue, the Answer Style Diversification (ASD) paradigm 
reformulate questions in each task into five unified formats, aligning the 
answer space across tasks.

Ø These five formats include Short Answer Question, Yes/No Question, 
Multiple Choice Question, Brief Explanation Question, and Detailed 
Explanation Question. After analyzing 15 mainstream benchmarks, we find 
that these formats sufficiently cover the requirements of all tasks.
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Answer Style Diversification
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Answer Style Diversification
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MFT: Mean Fine-tune Accuracy
MFN: Mean Final Accuracy
MAA: Mean Average Accuracy
BWT: Backward Transfer

By adding ASD to existing methods, MFN, MAA, 
and BWT achieve average improvements of 
7.00%, 14.63%, and 7.27%, respectively.



RegLoRA

Ø Although superficial forgetting is alleviated by ASD, essential forgetting—
the true loss of past knowledge—still remains.

Ø Experiments reveal that only a small subset of parameters change 
significantly during task learning. These key parameters likely carry most of 
the task-specific knowledge. 

Ø Therefore, we propose RegLoRA, which constrains updates to parameters 
significantly changed during previous tasks, thereby preserving knowledge 
of earlier tasks. 
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RegLoRA

Ø After each task, a 
regularization mask is 
saved to identify 
important elements for 
that task.

Ø During future training, 
updates to all previously 
identified elements are 
constrained.
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RegLoRA
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Quantitative Comparison

33



Qualitative Comparison
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(a) Instruction; (b) Response from the baseline model; (c) Response from the baseline model with ASD added; (d) 
Response from the baseline model with both ASD and RegLoRA added; (e) Basic information of the case.



Conclusion

Ø This paper identifies two forgetting types in MCIT—superficial forgetting, 
where the model’s response style becomes biased, and essential forgetting, 
where factual knowledge is lost.

Ø To address these issues, we propose the SEFE method, which includes two 
components: the ASD paradigm and RegLoRA. ASD mitigates superficial 
forgetting by diversifying question types within tasks, improving response 
style robustness and knowledge assessment. RegLoRA combats essential 
forgetting by identifying and regularizing critical weight components across 
LoRAs to preserve knowledge.

Ø Experiments demonstrate that both ASD and RegLoRA are effective in tackling 
their respective forgetting types, and together in SEFE, they achieve state-of-
the-art performance in mitigating catastrophic forgetting in MCIT.
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