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Introduction

Saliency Map

—

Simulating the human visual attention mechanism, salient object detection aims at
detecting the salient regions automatically, which has been applied in image/video
segmentation, image/video retrieval, image retargeting, video coding, quality

assessment, action recognition, and video summarization.
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Introduction

Salient Object Detection in Optical RSIs
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Optical RSI may include diversely
scaled objects, various scenes and
object types, cluttered backgrounds,
and shadow noises.

Sometimes, there is even no salient
region in a real outdoor scene, such
as the desert, forest, and sea.
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‘W Highly Cited Paper

Nested Network with Two-stream Pyramid for Salient
Object Detection in Optical Remote Sensing Images

Chongyi Li, Runmin Cong®*, Junhui Hou, Sanyi Zhang, Yue Qian, Sam Kwong
IEEE Transaction on Geoscience and Remote Sensing, 2019

https.//li-chongyi.github.io/proj_optical_saliency.html



https://li-chongyi.github.io/proj_optical_saliency.html

Contributions

a) An end-to-end network for salient object detection in optical RSls is
proposed, including a two-stream pyramid module (L-shaped module) and
an encoder-decoder module with nested connections (V-shaped module),
which generalizes well to varying scenes and object patterns.

b) The L-shaped module learns a set of complementary features to address
the scale variability of salient objects and capture local details, and the V-
shaped module automatically determines the discriminative features to
suppress cluttered backgrounds and highlight salient objects.

c) A challenging optical RSI dataset for salient object detection is constructed,
including 800 images with the pixel-wise ground truth. Moreover, the
proposed method achieves the best performance against fourteen state-of-
the-art salient object detection methods.



Our Method

Optical RSI

Two-Stream Pyramid Module (L-shaped Module)
| |

Encoder-Decoder Module with Nested Connections (V-shaped Module)
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Two-Stream Pyramid Module

o The type and scale of the objects in the optical RSI are variable and diverse,
including some small scaled airplanes or large bodies of water. To deal with the
scale variability of image patterns, we design an input pyramid structure and pass
scaled versions through our network.

o First, we progressively down-sample the input optical RSl for input pyramid
generation. Then, we extract the multi-scale feature representations of each down-
sampled input through a multi-scale convolution unit, and finally form a multi-scale
feature pyramid.

o The input pyramid preserves original detail features of input images, and the
feature pyramid provides abstract semantic features. We concatenate multi-
resolution input versions and multi-scale features at different levels to form the two-
stream pyramid and obtain complementary features.



Two-Stream Pyramid Module
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Encoder-Decoder Module with Nested Connections

o The complementary features hierarchically extracted by the two-stream pyramid
structure are passed to an encoder-decoder module, which gradually integrates
encoder detail features and decoder semantic features with nested connections.

o At the end, the salient regions of an input optical RSI are predicted by the integrated
features in a deeply supervised manner, where the encoder and decoder pathways
are connected through a series of nested connections.

o The nested connections would automatically select more discriminative saliency
features by the supervised learning, so that it could facilitate the fusion of encoder-
decoder features and remit the interferences of cluttered and noisy backgrounds.



Encoder-Decoder Module with Nested Connections

o To accurately capture the salient objects with exact boundaries, some encoder-
decoder network architectures) usually concatenate encoder detail features and
decoder semantical features through the brute-force skip connections (e.g., U-Net).
Unfortunately, we found that the brute-force skip connections can degrade the
quality of saliency prediction because the cluttered and noisy encoder features can
also be passed through the prediction layer, especially for optical RSIs with
complicated backgrounds. The ‘bad' features seriously affect the accuracy of the
saliency prediction. Therefore, we use the nested connections to gradually filter
out the ‘bad’ distractive features and make salient objects stand out by task-driven
learning.



Loss Function

L = —(ylog(z) + (1 — y)log(1 — z))

o we found that this loss function does not always work (L - =) when the
predicted score z is 0 or 1. It is possible for optical RSI when there is no
salient object. Thus, we rewrite the sigmoid cross-entropy loss as:

L = —(ylog(Feiip(2)) + (1 — y)log(1 — Fip(2)))

o where Fclip is a function that returns a tensor of the same type and shape
as input with its values clipped to p and u. Specifically, any values less than p
are set to p, while any values greater than u are set to L.



ORSSD Dataset

o We collected 800 optical RSIs to construct a dataset for salient object detection,
named ORSSD dataset, and the manually pixel-wise annotation for each image is
provided. The ORSSD dataset is very challenging, because a) the spatial resolution is
diverse, such as 1264 X987, 800 X600, and 256X256, b) the background is
cluttered and complicated, including some shadows, trees, and buildings, c) the

type of salient objects is various, including airplane, ship, car, river, pond, bridge,

stadium, beach, etc, and d) the number and size of salient objects are variable,

even in some scenes there are no salient object, such as the desert and thick forest.

o In experiments, we randomly selected 600 images from ORSSD dataset for training
and the rest 200 images as the testing dataset. The ORSSD dataset is available from
our project https://li-chongyi.github.io/proj_optical saliency.html.
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Experiments

TABLE II
QUANTITAT]VE COMPARISONS WITH DIFFERENT METHODS ON THE
Precision recall curve TESTING SUBSET OF ORSSD DATASET.
1 e

0o Method Precision | Recall Fg MAE Sm
' DSR [20] 0.6829 0.5972 | 0.6610 | 0.0859 | 0.7082
0.8 RBD [15] 0.7080 0.6268 | 0.6874 | 0.0626 | 0.7662
0.7 RRWR [4¥] 0.5782 0.6591 | 0.5950 | 0.1324 | 0.6835
0.6 HDCT [49] 0.6071 0.4969 | 0.5775 | 0.1309 | 0.6197
é DSG [50] 0.6843 0.6007 | 0.6630 | 0.1041 | 0.7195
30 MILPS [51] | 0.6954 | 0.6549 | 0.6856 | 0.0913 | 0.7361
04 RCRR [!5] 0.5782 0.6552 | 0.5944 | 0.1277 | 0.6849
0.3 v _ SSD [29] 0.5188 0.4066 | 0.4878 | 0.1126 | 0.5838
—DSR  —MILPS ==DSS | el N SPS [31] 0.4539 | 0.4154 | 0.4444 | 0.1232 | 0.5758
02f —RED RCRR wor e ;;."':f_:\ | ASD [33] | 05582 | 0.4049 | 0.5133 | 0.2119 | 0.5477
0.1 ==-HDCT =« SPS RFCN LIRS | DSS [24] 0.8125 0.7014 | 0.7838 | 0.0363 | 0.8262
; DSG ---ASD —LV-Net RADF [25] | 0.8311 | 0.6724 | 0.7881 | 0.0382 | 0.8259
0 0.2 0.4 Recal 0.6 0.8 1 R3Net [16] 0.8386 0.6932 | 0.7998 | 0.0399 | 0.8141

RFCN [2¥] 0.8239 | 0.7376 | 0.8023 | 0.0293 | 0.8437

LV-Net 0.8672 0.7653 | 0.8414 | 0.0207 | 0.8815




Conclusion

In this paper, we proposed the LV-Net for salient object detection in optical RSls.
Benefiting from both the two-stream pyramid module and the nested connections,
the proposed LV-Net can accurately locate the salient objects with diverse scales and

effectively suppress the cluttered backgrounds.

Moreover, we constructed an optical RSI dataset for salient object detection with
pixel-wise annotation.

Experiments demonstrate the proposed method significantly outperforms the
state-of-the-art methods both qualitatively and quantitatively. The module analysis
and parameter discussion demonstrate the effectiveness of each designed
component and the parameter settings in the proposed LV-Net



* Hot Paper Y Highly Cited Paper

Dense Attention Fluid Network for Salient Object
Detection in Optical Remote Sensing Images

Qijian Zhang, Runmin Cong*, Chongyi Li, Ming-Ming Cheng,
Yuming Fang, Xiaochun Cao, and Yao Zhao

IEEE Transactions on Image Processing, 2021

oroj DAFNet.html


https://rmcong.github.io/proj_DAFNet.html

Challenges

a) First, salient objects are often corrupted by
background interference and redundancy.

b) Second, salient objects in RSIs present much
more complex structure and topology than the
ones in NSIs, which poses new challenges in

capturing complete object regions.

c) Third, for the optical RSI SOD task, there is only
one dataset (i.e., ORSSD [6]) available for model
training and performance evaluation, which

. . . . b d
contains 800 images totally. This dataset is W ) (©) @ (¢)
Fig. 1. Visual illustration of SOD results for optical RSIs by applying different
pioneering, but its size is still relatively small. methods. (a) Optical RSIs. (b) Ground truth. (c) PFAN [11]. (d) LVNet [6].

(e) Proposed DAFNet.

[6] C. Li, R. Cong, J. Hou, S. Zhang, Y. Qian, and S. Kwong, “Nested network with two-stream pyramid for salient object detection in optical remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 11, pp. 9156-9166, 2019



Contributions

a)

An end-to-end Dense Attention Fluid Network (DAFNet) is proposed to achieve
SOD in optical RSIs, equipped with a Dense Attention Fluid (DAF) structure
decoupled from the backbone feature extractor and a Global Context-aware
Attention (GCA) mechanism.

The DAF structure is designed to combine the multi-level attention cues, where
shallow-layer attention cues flow into the attention units of deeper layers so that
low-level attention cues could be propagated as guidance information to enhance
the high-level attention.

The GCA mechanism is proposed to model the global context semantic
relationships by a global feature aggregation module, and tackle the scale
variation by a cascaded pyramid attention module.

A large-scale benchmark dataset including 2, 000 images and corresponding pixel-
wise annotations is constructed for SOD in optical RSIs. The proposed DAFNet
consistently outperforms 15 state-of-the-art competitors in the experiments.



Our Method
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Attention Fluid Guided Feature Encoding

o The attention fluid guided feature encoding consists of:

¢ a feature fluid that generates hierarchical feature representations with
stronger discriminative ability by incorporating attention cues mined

from the corresponding global context-aware attention modules.

¢ an attention fluid where low-level attention maps flow into deeper

layers to guide the generation of high-level attentions .



Global Context-aware Attention Mechanism

o We investigate a novel global context-aware attention (GCA) mechanism that
explicitly captures the long-range semantic dependencies among all spatial locations
in an attention manner. The GCA module consists of two main functional

components:

¢ The global feature aggregation (GFA) module consumes raw side features
generated from the backbone convolutional block and produces aggregated
features that encode global contextual information.

¢ The cascaded pyramid attention (CPA) module is used to address the scale
variation of objects in optical RSIs, which takes the aggregated features from
GFA as input and produces a progressively refined attention map under a
cascaded pyramid framework.



Global Context-aware Attention Mechanism

® Global Feature Aggregation

o The GFA module aims to achieve feature alignment and mutual reinforcement
between saliency patterns by aggregating global semantic relationships among pixel

pairs, which is beneficial to generate intact and uniform saliency map.
o Aggregated feature map F° with global contextual dependencies:
FS=fS+8-(fOG%)
o Refined feature map ng with more compact channel information:

%S=FS@FS



Global Context-aware Attention Mechanism

® Cascaded Pyramid Attention

o We design a cascaded pyramid attention to ||| @w """"
Side Feature E’s x"
progressively refine both features and
attentive cues from coarse to fine. H E O0—0O—@
- ——
o The CPA module produces a full-resolution F: X
attention map A°® at the original feature ]l [ o— u
. s A ion M
scale, which can be formulated as: £, ttention Ylap
=== Down-sampling 2x @ Attention Unit
’\S . S S S S —_ Non-Lincz.irity ® F‘Iement-wi.se Multiplif:ation
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}

AS = Att(]fgs) =0 (conv (concat (avepool(lfgs),maxPOOZ(EgS)) , é))



Dense Attention Fluid Structure

o Each GCA module consumes a raw side feature map f°, and produces an attention
map A°.
o First, we build sequential connections among the attention maps generated from

hierarchical feature representations. Moreover, considering the hierarchical
attention interaction among different levels, we add feed-forward skip connections

to form the attention fluid. Formally, the above updating process is denoted as:

AS « o(conv(concat((AV) L, ..., (A°71) |, A5)))

o With the updated attention map, the final feature map at the st convolution stage

E> can be generated via the residual connection:

;= concat(Fi, (Foue,) 1) © (A% 4+ 0%)



Progressive Feature Decoding

O

Each decoding stage consists of three procedures.

First, we employ top-down feature fusion (FF) to align the spatial resolution and
number of channels between adjacent side feature maps via up-samplingand 1 X 1
convolution, and then perform pointwise summation.

Second, a bottleneck convolutional block (CB) is deployed to further integrate

semantic information from fusion features.

Third, we deploy a mask prediction layer and an edge prediction layer for the
decoded features, and use a Sigmoid layer to map the range of saliency scores into

[0, 1].
The final output of our DAFNet is derived from the predicted saliency map at the top

decoding level.



Loss Function

o To accelerate network convergence and vyield more robust saliency feature
representations, we formulate a hierarchical optimization objective by applying
deep supervisions to the side outputs at different convolution stages. We further

introduce edge supervisions to capture fine-grained saliency patterns and enhance
the depiction of object contours.

£=i(w,§lﬁ+a)g-q
s=1

class-balanced binary class-balanced binary
cross-entropy loss cross-entropy loss
function for saliency function for salient edge

supervision supervision



EORSSD Dataset

Fig. 4. Visualization of the more challenging EORSSD dataset. The first row shows the optical RSI, and the second row exhibits the corresponding ground
truth. (a) Challenge in the number of salient objects. (b) Challenge in small salient objects. (c) Challenge in new scenarios. (d) Challenge in interferences

from imaging. (e) Challenge in specific circumstances.
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Fig. 5. Statistical analysis of EORSSD dataset. (a) Type analysis of salient object. (b) Number analysis of salient object. (c¢) Size analysis of salient object.

Download: https://github.com/rmcong/EORSSD-dataset
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TABLE V

QUANTITATIVE EVALUATION OF ABLATION STUDIES ON THE TESTING
SUBSET OF EORSSD DATASET

A
Eqr:
T
fﬂﬂ UEE

Baseline GFA CPA DAF Fg MAE Sm

0.8391 0.0125 0.8432
v 0.8504 0.0098 0.8661
v v 0.8742 0.0083 0.8760
v v v 0.8922 0.0060 0.9167

SNENENEN

L\ Net

ORSSD Dataset

EORSSD Dataset

Fgt |[MAE || Sy 1

Fgt [MAE || Sp 1

DSG [26] | 0.6630 | 0.1041 | 0.7195 || 0.5837 | 0.1246 | 0.6428
RRWR [25] | 0.5950 | 0.1324 | 0.6835 || 0.4495 | 0.1677 | 0.5997
HDCT [22] | 0.5775 | 0.1309 | 0.6197 || 0.5992 | 0.1087 | 0.5976
SMD [23] | 0.7075 | 0.0715 | 0.7640 || 0.6468 | 0.0770 | 0.7112
RCRR [24] 1 0.5944 | 0.1277 | 0.6849 || 0.4495 | 0.1644 | 0.6013

DSS [28] | 0.7838 | 0.0363 | 0.8262 || 0.7158 | 0.0186 | 0.7874
R3Net [27] [ 0.7998 | 0.0399 | 0.8141 || 0.7709 | 0.0171 | 0.8193
RADF [29] | 0.7881 | 0.0382 | 0.8259 || 0.7810 | 0.0168 | 0.8189
PFAN [11] | 0.8344 | 0.0543 | 0.8613 || 0.7740 | 0.0159 | 0.8361
PoolNet [39] | 0.7911 | 0.0358 | 0.8403 || 0.7812 | 0.0209 | 0.8218
EGNet [16] 0.0216 | 0.8721 0.8602
CMC [46] |0.4214 | 0.1267 | 0.6033 || 0.3663 | 0.1057 | 0.5800

VOS [45] ]0.4168 | 0.2151 | 0.5366 || 0.3599 | 0.2096 | 0.5083
SMFF [41] | 0.4864 | 0.1854 | 0.5312 || 0.5738 | 0.1434 | 0.5405
LVNet [6] |0.8414 0.8051 | 0.0145
DAFNet-V | 0.9174 | 0.0125 | 0.9191 || 0.8922 | 0.0060 | 0.9167
DAFNet-R | 0.9235 | 0.0106 | 0.9188 || 0.9060 | 0.0053 | 0.9185




Conclusion

* This paper focuses on salient object detection in optical remote sensing images and
proposes an end-to-end encoder-decoder framework dubbed as DAFNet, in which
attention mechanism is incorporated to guide the feature learning.

* Benefiting from the attention fluid structure, our DAFNet learns to integrate low-
level attention cues into the generation of high-level attention maps in deeper
layers. Moreover, we investigate the global context-aware attention mechanism to
encode long-range pixel dependencies and explicitly exploit global contextual
information. In addition, we construct a new large-scale optical RSI benchmark
dataset for SOD with pixel-wise saliency annotations.

* Extensive experiments and ablation studies demonstrate the effectiveness of the
proposed DAFNet architecture.



‘W Highly Cited Paper

RRNet: Relational Reasoning Network with Parallel
Multiscale Attention for Salient Object Detection
in Optical Remote Sensing Images

Runmin Cong, Yumo Zhang, Leyuan Fang, Jun Li, Yao Zhao, and Sam Kwong

IEEE Transactions on Geoscience and Remote Sensing, 2022

github.io/proj RRNet.html



https://rmcong.github.io/proj_RRNet.html

Contributions

a)

b)

We propose a novel end-to-end relational reasoning network with parallel multi-
scale attention (RRNet) for SOD in optical RSIs, which consists of a relational
reasoning encoder and a multi-scale attention decoder.

We design a relational reasoning module in the high-level layers of the encoder
stage to model the sematic relations and force the generation of complete salient
objects. This is the first attempt to introduce relational reasoning in the SOD
framework for optical RSls. Moreover, we innovatively employ relational reasoning
along the spatial and channel dimensions jointly to obtain more comprehensive
semantic relations.

We propose a parallel multi-scale attention scheme in the low-level layers of the
decoder stage to recover the detail information in a multi-scale and attention
manner. This mechanism can deal with the object scale variation issue through
the multi-scale design, while effectively recovering the detail information with the
help of shallower features selected by the parallel attention.



Our Method
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Relational Reasoning Encoder

s

Spatial Relational Reasoning E Channel Relational Reasoning
|

Graph Construction

A(G?) = diag(convy x1(avepool (G*)))
A;j = (convix1(G*)); - A(G?) - (conlel(Gs))JT F* = o(LG*O)

We design a relational reasoning module in the high-level layers of the encoder stage to
model the sematic relations and force the generation of complete salient objects. This is
the first attempt to introduce relational reasoning in the SOD framework for optical RSIs.
Moreover, we innovatively employ relational reasoning along the spatial and channel
dimensions jointly to obtain more comprehensive semantic relations.



Multi-scale Attention Decoder

Attention Map

We propose a parallel multi-scale attention scheme in
the low-level layers of the decoder stage to recover the
detail information in a multi-scale and attention manner.
This mechanism can deal with the object scale variation
issue through the multi-scale design, while effectively
recovering the detail information with the help of
shallower features selected by the parallel attention.

Left Branch Right Branch
A;i; = U(CO'stxs(Fs;q:;xs)) F3. 3 = o(convzx3(X®;@3x3)).
A‘i)l( 5 = U(le’vsxs(rs;Q5x5)) fo s = 0(conusxs5(X*; Wsxs)).
A7x7 = o(convy7(T'*;0747)) 7x7 = 0(convr 7 (X*;0747)).

S S S, S 1
Aj = g(As’is DAY DAY, A= 3(A3x‘3 ® Agys ® A7xr).

Fusion
A} = o(convixi(concat(Aj, A7)))
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Experiments

2 .. H W
(f“ + 1) - Precision - Recall 1
Fg= P 5 ) - : MAI:‘:H WZZIS(x»y)-G(x,y)I, S=a*So+(1—a)*S,,
p¢ - Precision + Recall L~
TABLE II
ORSSD Dataset EORSSD Dataset ABLATION ANALYSIS ON THE EORSSD DATASET.
Fj3 E,, MAE S, Fs E,, MAE S

R3Net | .7698 .8907 .0409 .8092 | .7989 .9547 .0170 .8305 Baseline PMA SRR CRR | Fp Em ~ MAE  Sm

RADF | .7865 .9123 .0386 .8252 | .7966 .9227 .0162 .8332 v 0.8302  0.9217 0.0148  0.8695

PoolNet | .7911 .9604 .0358 .8403 | .8012 .9358 .0209 .8301 v v 0.8819  0.9523 0.0105 0.9021
PFAN | .8344 9418 .0543 .8613 | .7931 .9334 .0156 .8446 v v v 0.8947  0.9582 0.0091  0.9156
v v v v | 09119 09720 0.0076 0.9230

EGNet 8585 .9727 .0215 .8780 | .8310 .9600 .0109 .8692
GateNet | .8794 .9464 .0197 .8853 | .8618 .9440 .0131 .8710

F3Net | .8661 .9433 .0215 .8949 | .8681 .9487 .0119 .9040 TABLE III

GCPANet | .8833 9545 .0186 .8865 | .8546 .9448 .0123 .8674 FURTHER VALIDATION OF RR AND PMA ON THE EORSSD DATASET.
MINet | .8751 .9423 .0171 .8865 | .8510 .9354 .0104 .8909
SMFF | .4764 .7518 .1897 .5329 | .5693 .7892 1471 .5431 Modules Fg Em MAE Sm
CMC | .4214 .7069 .1267 .6033 | .3555 .6785 .1066 .5826 full model 09119 | 0.9720 | 0.0076 | 0.9230
LVNet | .8414 .9342 .0207 .8815 | .8213 .9302 .0146 .8642 RR w/Non-local | 0.9102 | 0.9691 | 0.0093 | 0.9225

DAFNet | .9192 .9699 .0105 .9188 | .9060 .9684 .0053 .9185 PMA w/o PMA(r) | 0.9100 | 0.9707 | 0.0079 | 0.9227
Ours 9203 .9808 .0103 .9282 | 9119 .9720 .0076 .9230 w/o PMA(l) | 0.9037 | 0.9544 | 0.0089 | 0.9094




Conclusion

* A novel end-to-end SOD model for optical RSIs is presented, named RRNet, which is
capable of reasoning semantic information and restoring detail information.

* The relational reasoning in the spatial space and channel space is designed to model
the relationship between different salient objects or different parts of the salient
object, which can effectively suppress background interference and force the
generation of complete salient objects.

* We propose a parallel multi-scale attention module that utilizes attention
mechanism to improve the detection accuracy and restore the details of different
scale objects through multi-scale design.

* Experimental evaluations over two datasets indicate that our method outperforms
the state-of-the-art salient object detectors.



Future work

Extending the existing saliency detection datasets in optical remote sensing

-

image to include a wider range, more diverse, and challenging scene types.

p

New attempts in learning based saliency detection methods, such as small

————————
7
-

samples training, weakly supervised learning, and cross-domain learning.

------------------------------------------------------------------------------------------------

New ideas and solutions in saliency detection task, such as instance-level

-

saliency detection and segmentation, saliency improvement and refinement.
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