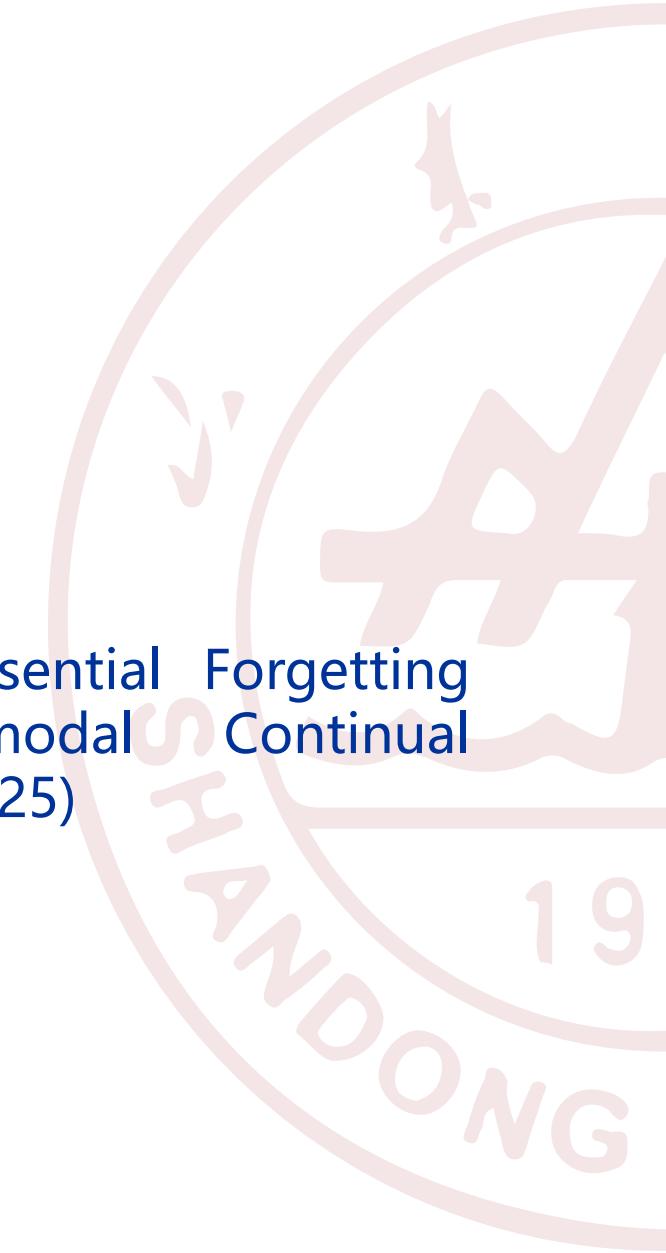


山东大学
SHANDONG UNIVERSITY

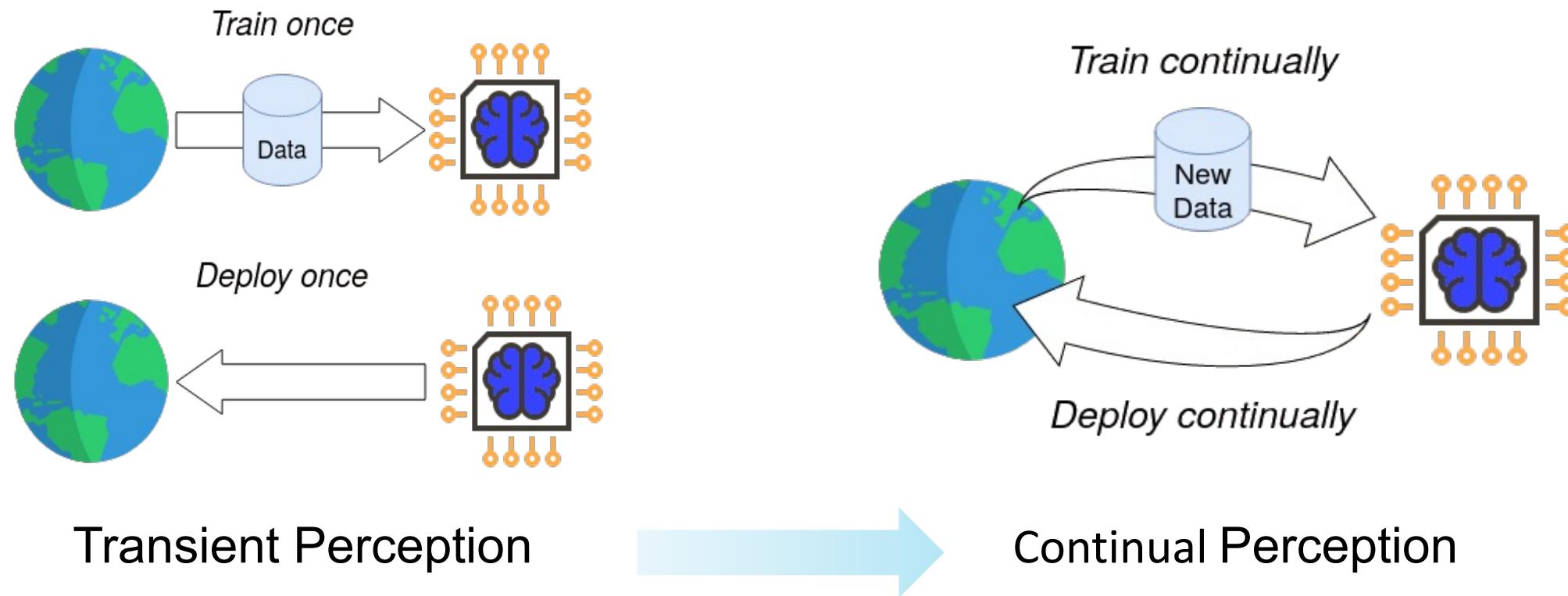
2025首届具身智能系统及应用大会
复杂工业场景具身智能实时安全控制论坛

多模态大模型连续指令微调

报告人：丛润民


山东大学控制科学与工程学院
机器智能与系统控制教育部重点实验室

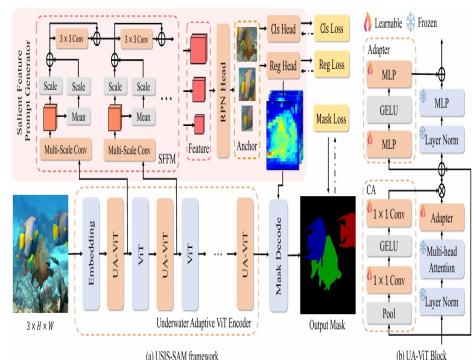
学无止境 气有洪然



目录 CONTENTS

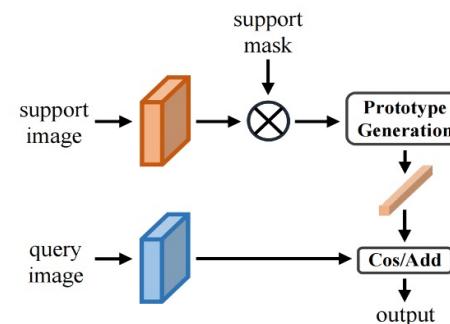
- Introduction
- Technical Methods
 - SEFE: Superficial And Essential Forgetting Eliminator For Multimodal Continual Instruction Tuning (ICML' 25)
- Future Work

Introduction —— Transient → Continual Learning



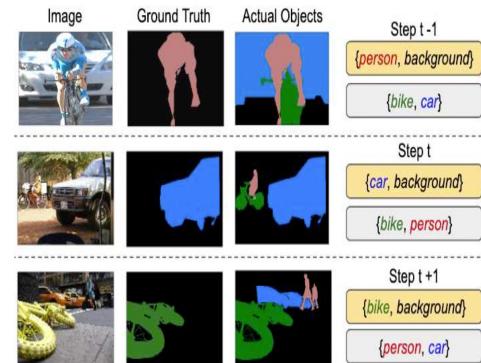
As shown in the above image, a conventional model can only be trained once and has fixed capabilities. In contrast, a model with continual learning abilities can continuously expand its capabilities to meet new requirements.

Introduction —— Transient → Continual Learning

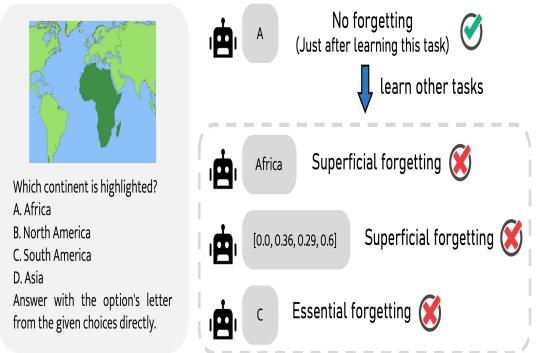

瞬态学习

全监督

当前类别学习
全监督学习

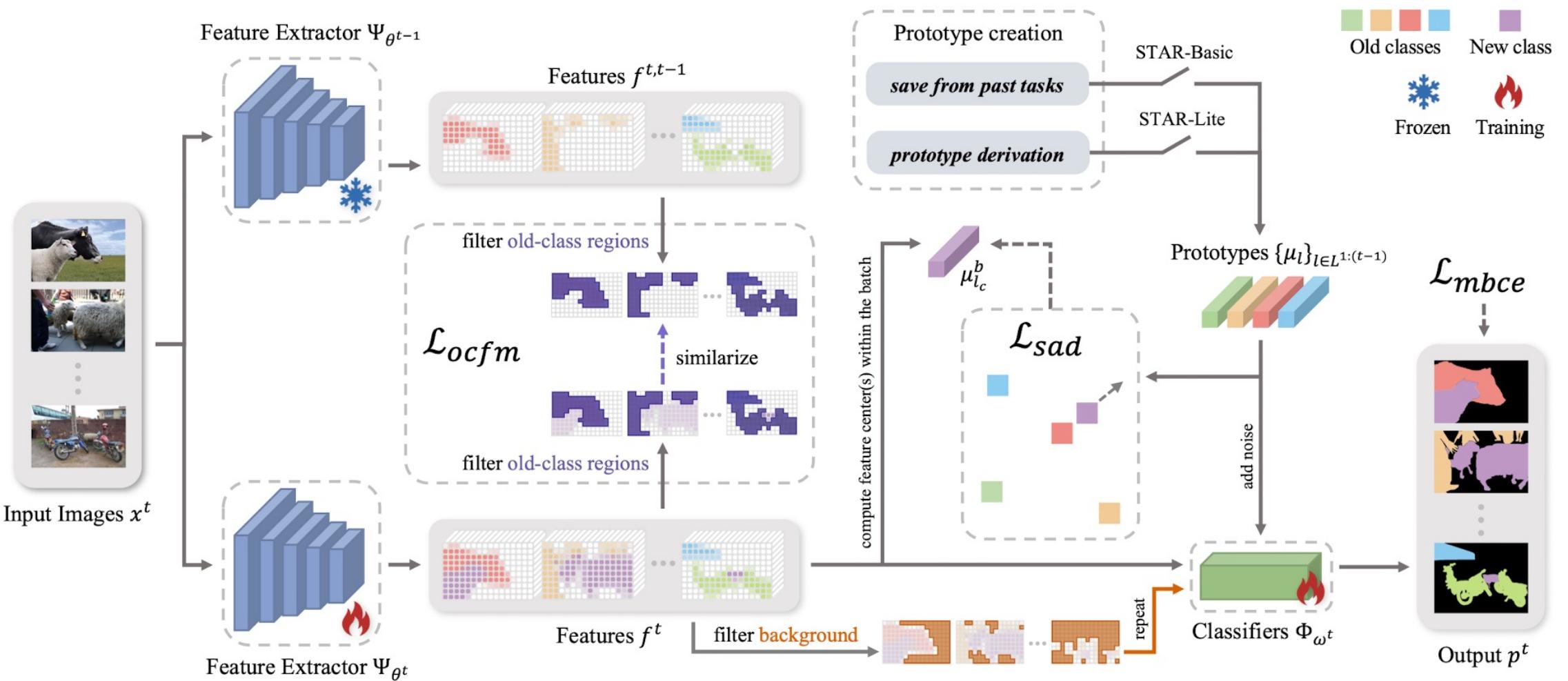

小样本

新类别学习
小样本学习


持续学习

小模型

小模型语义理解
持续学习


大模型

多模态大模型推理
持续学习

STAR Method

<https://github.com/jinpeng0528/STAR>

Experiments

Method	19-1						15-5						15-1					
	Disjoint			Overlapped			Disjoint			Overlapped			Disjoint			Overlapped		
	base	inc.	all	base	inc.	all	base	inc.	all	base	inc.	all	base	inc.	all	base	inc.	all
MiB [10]	69.6	25.6	67.4	70.2	22.1	67.8	71.8	43.3	64.7	75.5	49.4	69.0	46.2	12.9	37.9	35.1	13.5	29.7
SDR [14]	69.9	37.3	68.4	69.1	32.6	67.4	73.5	47.3	67.2	75.4	52.6	69.9	59.2	12.9	48.1	44.7	21.8	39.2
PLOP [12]	75.1	38.2	73.2	75.4	37.4	73.5	66.5	39.6	59.8	75.7	51.7	70.1	49.0	13.8	40.2	65.7	17.3	54.2
SSUL [11]	77.4	22.4	74.8	77.7	29.7	75.4	76.4	45.6	69.1	77.8	50.1	71.2	74.0	32.2	64.0	77.3	36.6	67.6
STCISS [55]	76.6	36.0	75.4	76.1	43.4	74.5	76.9	54.3	71.3	76.7	54.3	71.1	70.1	34.3	61.2	71.4	40.0	63.6
RBC [58]	76.4	45.8	75.0	77.3	55.6	76.2	75.1	49.7	69.9	76.6	52.8	70.9	61.7	19.5	51.6	69.5	38.4	62.1
DKD [9]	77.4	43.6	75.8	77.8	41.5	76.0	77.6	54.1	72.0	78.8	58.2	73.9	76.3	39.4	67.5	78.2	44.3	70.1
UCD [56]	75.7	31.8	73.5	75.9	39.5	74.0	67.0	39.3	60.1	75.0	51.8	69.2	50.8	13.3	41.4	66.3	21.6	55.1
EWF [57]	78.2	3.2	74.6	77.9	6.7	74.5	79.3	38.2	69.5	79.4	38.2	69.5	75.3	22.5	62.7	78.5	31.6	67.3
STAR-Lite	77.9	46.4	76.4	78.1	49.1	76.8	78.5	58.3	73.7	79.7	59.4	74.8	78.5	45.9	70.8	80.0	51.2	73.1
RECALL [59]	65.0	47.1	65.4	68.1	55.3	68.6	69.2	52.9	66.3	67.7	54.3	65.6	67.6	49.2	64.3	67.8	50.9	64.8
PLOPLong [60]	-	-	-	74.8	39.7	73.1	-	-	-	76.0	48.3	69.4	-	-	-	72.0	26.7	61.2
SSUL-M [11]	77.6	43.9	76.0	77.8	49.8	76.5	76.5	48.6	69.8	78.4	55.8	73.0	76.5	43.4	68.6	78.4	49.0	71.4
DKD-M [9]	77.6	56.9	76.6	78.0	57.7	77.0	77.7	55.4	72.4	79.1	60.6	74.7	77.3	48.2	70.3	78.8	52.4	72.5
STAR-Basic	78.0	47.5	76.5	78.2	48.5	76.8	78.5	57.9	73.6	79.7	59.6	74.9	78.1	48.2	71.0	79.8	51.6	73.1
STAR-Basic†	77.9	53.6	76.7	78.1	56.3	77.0	78.6	58.4	73.8	80.1	62.2	75.8	77.8	50.4	71.3	79.8	55.5	74.0

Pascal VOC 2012 Dataset - 1

Method	13-6			13-1		
	base	inc.	all	base	inc.	all
MiB [10]	52.8	17.9	41.8	51.6	22.9	42.5
PLOP [12]	53.2	10.1	39.6	52.4	15.1	40.6
DKD [9]	55.5	36.4	49.8	55.7	20.9	46.5
UCD [56]	53.0	18.6	42.1	52.2	23.4	43.1
STAR-Lite	56.6	50.5	54.7	55.7	31.2	48.3
STAR-Basic	56.4	50.9	54.8	55.7	31.1	48.3

CityScapes Dataset

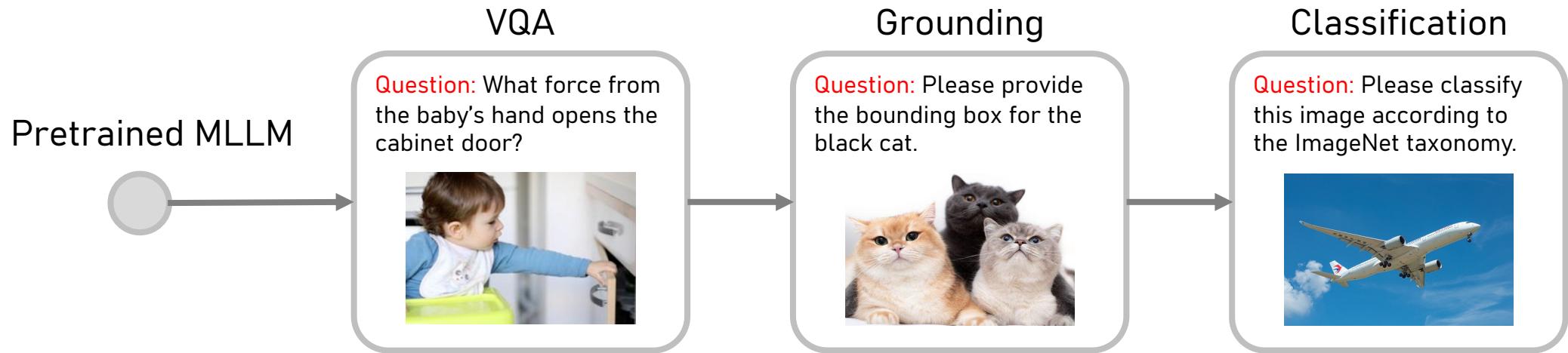
STAR-Basic: Save 100x Storage Cost

STAR-Lite: Replay Without Any Storage

Method	10-1			5-3		
	base	inc.	all	base	inc.	all
MiB [10]	12.3	13.1	12.7	57.1	42.6	46.7
PLOP [12]	44.0	15.5	30.5	17.5	19.2	18.7
SSUL [11]	71.3	46.0	59.3	72.4	50.7	56.9
DKD [9]	73.1	46.5	60.4	69.6	53.5	58.1
EWF [57]	71.5	30.3	51.9	61.7	42.2	47.7
STAR-Lite	74.0	53.5	64.3	72.1	59.6	63.2
SSUL-M [11]	74.0	53.2	64.1	71.3	53.2	58.4
DKD-M [9]	74.0	56.7	65.8	69.8	60.2	62.9
STAR-Basic	72.6	55.4	64.4	70.7	61.8	64.3
STAR-Basic†	74.4	56.9	66.1	72.4	63.3	65.9

Pascal VOC 2012 Dataset - 2

Method	100-50			100-10			50-50		
	base	inc.	all	base	inc.	all	base	inc.	all
MiB [10]	40.5	17.2	32.8	38.2	11.1	29.2	45.6	21.0	29.3
PLOP [12]	41.9	14.9	32.9	40.5	13.6	31.6	48.8	21.0	30.4
SSUL [11]	41.3	18.0	33.6	40.2	18.8	33.1	48.4	20.2	29.6
RCIL [54]	42.3	18.8	34.5	39.3	17.6	32.1	48.3	25.0	32.5
STCISS [55]	40.7	24.0	35.1	33.6	16.9	28.1	40.0	23.6	29.0
RBC [58]	42.9	21.5	35.8	39.0	21.7	33.3	49.6	26.3	34.2
DKD [9]	42.4	22.9	36.0	41.5	19.4	34.2	48.8	26.3	33.9
EWF [57]	41.2	21.3	34.6	41.5	16.3	33.2	46.1	19.8	28.5
STAR-Lite	42.4	24.3	36.4	42.0	20.4	34.9	48.7	26.9	34.3
PLOPLong [60]	41.9	14.9	32.9	40.5	13.6	31.6	48.8	21.0	30.4
SSUL-M [11]	42.8	17.5	34.4	42.9	17.7	34.5	49.1	20.1	29.8
DKD-M [9]	42.4	23.0	36.0	41.7	20.1	34.6	48.8	26.3	33.9
STAR-Basic	42.4	24.3	36.4	41.8	20.7	34.8	48.3	27.0	34.2


ADE20K Dataset

SEFE: Superficial and Essential Forgetting Eliminator for Multimodal Continual Instruction Tuning

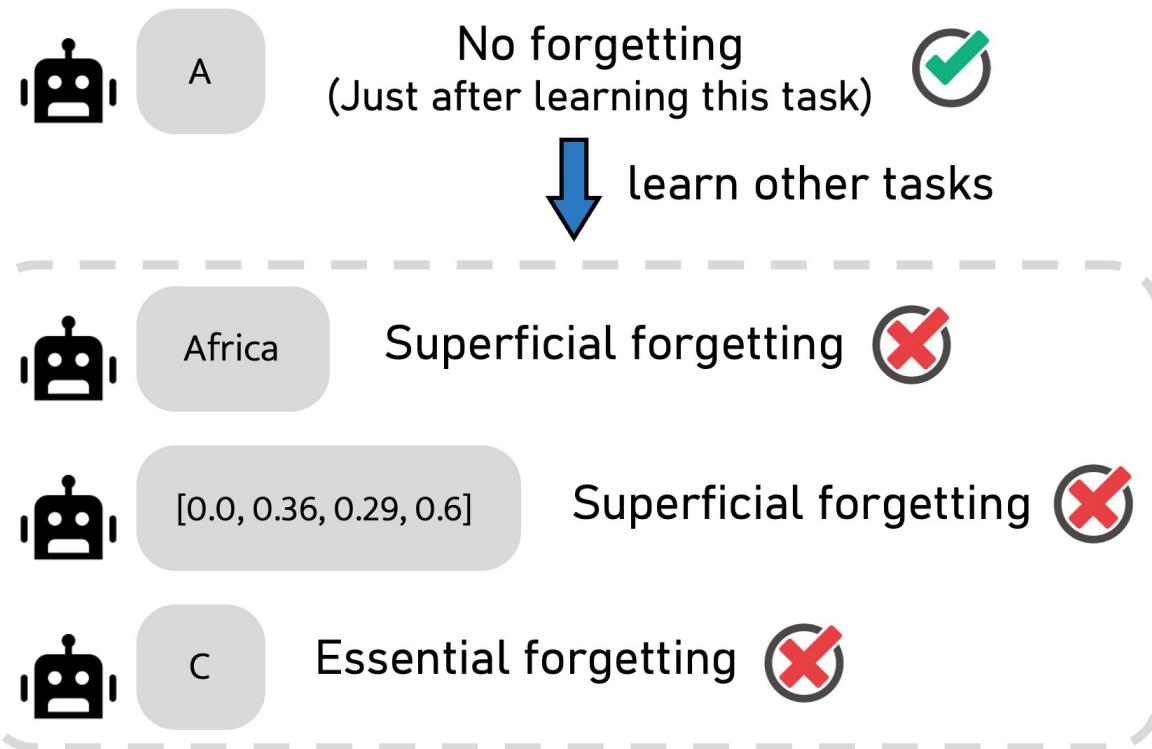
*Jinpeng Chen, Runmin Cong, Yuzhi Zhao, Hongzheng Yang,
Guangneng Hu, Horace Ho Shing Ip, and Sam Kwong*

Introduction

- In **Multimodal Continual Instruction Tuning (MCIT)**, a pretrained Multimodal Large Language Model (MLLM) is sequentially tuned on a series of multimodal tasks, aiming to learn new tasks while minimizing forgetting of previously learned ones.

Introduction

Does the forgetting problem become more severe or alleviated for large and small models under continual learning architectures?


Introduction

Does the forgetting problem become more severe or alleviated for large and small models under continual learning architectures?

Which continent is highlighted?
A. Africa
B. North America
C. South America
D. Asia
Answer with the option's letter from the given choices directly.

Contributions

- a) We formally define *superficial forgetting* and *essential forgetting* in MCIT. Furthermore, our proposed method, SEFE, addresses these challenges and achieves state-of-the-art performance.
- b) To mitigate *superficial forgetting*, we introduce the **Answer Style Diversification (ASD)** paradigm that unifies the answer domain across tasks by rephrasing questions, thereby reducing the model's bias toward specific response styles. Additionally, we create **CoIN-ASD**, an ASD-adjusted version of the CoIN benchmark, which can serve as a new benchmark for evaluating *essential forgetting* in future MCIT studies.
- c) To address *essential forgetting*, we present **RegLoRA**. By identifying critical elements in the weight update matrices and applying regularization constraints, RegLoRA ensures that LoRA fine-tuning does not disrupt the model's existing knowledge.

Forgetting Types

Which continent is highlighted?

A. Africa
B. North America
C. South America
D. Asia

Answer with the option's letter from the given choices directly.

 A

No forgetting
(Just after learning this task)

 Africa Superficial forgetting

 [0.0, 0.36, 0.29, 0.6] Superficial forgetting

 C Essential forgetting

learn other tasks

- **Superficial Forgetting:** task knowledge may be retained while the response style is forgotten.
- **Essential Forgetting:** task knowledge is forgotten.

Answer Style Diversification

- *Superficial forgetting* arises from the gap in answer space between tasks, as the model tends to respond in the answer style of the most recently learned task.
- To address this issue, the **Answer Style Diversification (ASD) paradigm** reformulate questions in each task into five unified formats, aligning the answer space across tasks.
- These five formats include Short Answer Question, Yes/No Question, Multiple Choice Question, Brief Explanation Question, and Detailed Explanation Question. After analyzing 15 mainstream benchmarks, we find that these formats sufficiently cover the requirements of all tasks.

Answer Style Diversification

Answer Style Diversification

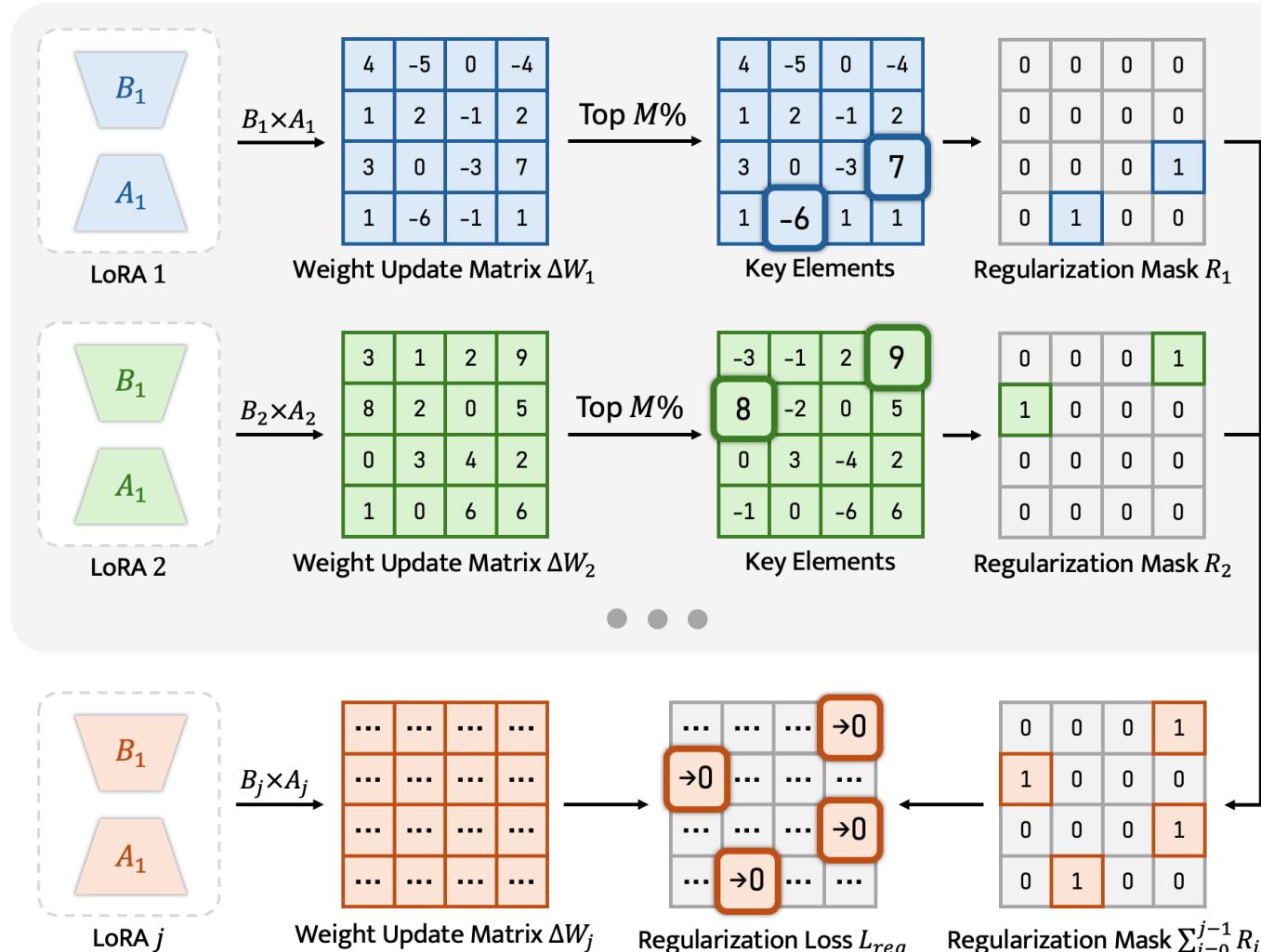
Method	Accuracy on Each Task (%)								Aggregate Results (%)			
	<i>SQA</i>	<i>VQA</i> ^{<i>Text</i>}	<i>ImgNet</i>	<i>GQA</i>	<i>VizWiz</i>	<i>Grd</i>	<i>VQA</i> ^{<i>v2</i>}	<i>VQA</i> ^{<i>OCR</i>}	<i>MFT</i> ↑	<i>MFN</i> ↑	<i>MAA</i> ↑	<i>BWT</i> ↓
FFT	2.95	36.38	52.35	46.40	33.90	0.00	61.65	50.00	65.87	35.45	36.73	-30.42
LoRA [20]	54.05	44.63	41.25	47.55	20.80	0.85	59.30	64.30	70.21	41.59	39.53	-28.62
O-LoRA [45]	75.40	52.89	71.85	47.30	37.35	7.10	61.85	61.20	<u>69.30</u>	51.87	49.56	-17.43
LoTA [38]	67.30	41.51	8.25	37.15	42.25	0.10	47.95	56.15	54.72	37.58	50.46	-17.14
FFT+ASD	74.50	50.12	65.40	54.35	45.50	0.00	64.40	68.50	68.28	<u>52.85</u>	57.18	-15.44
LoRA+ASD [20]	74.45	49.70	39.30	52.00	50.45	7.05	62.25	47.80	68.13	47.88	<u>59.71</u>	-20.26
O-LoRA+ASD [45]	75.20	55.36	67.50	54.70	52.90	15.40	64.45	35.05	65.59	52.57	61.63	<u>-13.02</u>
LoTA+ASD [38]	76.90	42.65	15.85	40.25	45.10	0.30	54.35	54.00	56.99	41.18	56.28	-15.82

MFT: Mean Fine-tune Accuracy

MFN: Mean Final Accuracy

MAA: Mean Average Accuracy

BWT: Backward Transfer


By adding ASD to existing methods, MFN, MAA, and BWT achieve average improvements of 7.00%, 14.63%, and 7.27%, respectively.

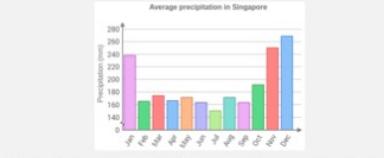
RegLoRA

- Although *superficial forgetting* is alleviated by ASD, *essential forgetting*—the true loss of past knowledge—still remains.
- Experiments reveal that only a small subset of parameters change significantly during task learning. These key parameters likely carry most of the task-specific knowledge.
- Therefore, we propose **RegLoRA**, which constrains updates to parameters significantly changed during previous tasks, thereby preserving knowledge of earlier tasks.

RegLoRA

- After each task, a **regularization mask** is saved to identify important elements for that task.
- During future training, updates to all previously identified elements are constrained.

RegLoRA


Configuration	Aggregate Results (%)			
	MFT↑	MFN↑	MAA↑	BWT↑
Baseline (LoRA)	70.21	41.59	39.53	-28.62
+ ASD	68.13	<u>47.88</u>	<u>59.71</u>	<u>-20.26</u>
+ ASD + RegLoRA	<u>69.02</u>	58.57	63.04	-10.45

Quantitative Comparison

Method	Accuracy on Each Task (%)								Aggregate Results (%)			
	<i>SQA</i>	<i>VQA^{Text}</i>	<i>ImgNet</i>	<i>GQA</i>	<i>VizWiz</i>	<i>Grd</i>	<i>VQA^{v2}</i>	<i>VQA^{OCR}</i>	<i>MFT↑</i>	<i>MFN↑</i>	<i>MAA↑</i>	<i>BWT↓</i>
FFT	2.95	36.38	52.35	46.40	33.90	0.00	61.65	50.00	65.87	35.45	36.73	-30.42
LoRA [20]	54.05	44.63	41.25	47.55	20.80	0.85	59.30	64.30	70.21	41.59	39.53	-28.62
O-LoRA [45]	75.40	52.89	71.85	47.30	37.35	7.10	61.85	61.20	<u>69.30</u>	51.87	49.56	-17.43
LoTA [38]	67.30	41.51	8.25	37.15	42.25	0.10	47.95	56.15	54.72	37.58	50.46	-17.14
FFT+ASD	74.50	50.12	65.40	54.35	45.50	0.00	64.40	68.50	68.28	<u>52.85</u>	57.18	-15.44
LoRA+ASD [20]	74.45	49.70	39.30	52.00	50.45	7.05	62.25	47.80	68.13	47.88	<u>59.71</u>	-20.26
O-LoRA+ASD [45]	75.20	55.36	67.50	54.70	52.90	15.40	64.45	35.05	65.59	52.57	61.63	<u>-13.02</u>
LoTA+ASD [38]	76.90	42.65	15.85	40.25	45.10	0.30	54.35	54.00	56.99	41.18	56.28	-15.82
SEFE (Ours)	75.35	58.66	83.10	54.25	48.85	16.75	65.35	66.25	69.02	58.57	63.04	-10.45

Qualitative Comparison

	Case 1	Case 2	Case 3	Case 4	Case 5
(a)	<p>Which material are these marbles made of? A. glass B. cardboard Answer with the option's letter from the given choices directly.</p>	<p>Context: Use the graph to answer the question below. Which three months have over 200millimeters of precipitation in Singapore? A. May, June, and July B. August, September, and October C. November, December, and January Answer with the option's letter from the given choices directly.</p>	<p>What is the player's number in white and green? Reference OCR token: GUWES, 22, CLOPTON, 31 Answer the question using a single word or phrase.</p>	<p>Which kind of furniture is brown? Answer the question using a single word or phrase.</p>	<p>Please provide the bounding box coordinates of the region described by the sentence 'girl in plaid shirt' in the format [x1, y1, x2, y2].</p>
(b)	Glass <input checked="" type="checkbox"/> Superficial	August, September, and October <input checked="" type="checkbox"/> Both	Maillot <input checked="" type="checkbox"/> Superficial	[0.5, 0.36, 0.99, 0.9] <input checked="" type="checkbox"/> Superficial	right <input checked="" type="checkbox"/> Superficial
(c)	A <input checked="" type="checkbox"/>	B <input checked="" type="checkbox"/> Essential	31 <input checked="" type="checkbox"/> Essential	couch <input checked="" type="checkbox"/>	[0.72, 0.34, 0.9, 0.65] <input checked="" type="checkbox"/> Essential
(d)	A <input checked="" type="checkbox"/>	C <input checked="" type="checkbox"/>	22 <input checked="" type="checkbox"/>	couch <input checked="" type="checkbox"/>	[0.76, 0.33, 0.99, 0.65] <input checked="" type="checkbox"/>
(e)	Task: ScienceQA (task 1) Model Stage: Learned 8 tasks (last learned task: OCR-VQA) Ground Truth: A	Task: ScienceQA (task 1) Model Stage: Learned 8 tasks (last learned task: OCR-VQA) Ground Truth: C	Task: TextVQA (task 2) Model Stage: Learned 3 tasks (last learned task: ImageNet) Ground Truth: 22	Task: GQA (task 4) Model Stage: Learned 6 tasks (last learned task: Grounding) Ground Truth: Couch	Task: Grounding (task 6) Model Stage: Learned 7 tasks (last learned task: VQAv2) Ground Truth: [0.76, 0.34, 1.0, 0.64]

(a) Instruction; (b) Response from the baseline model; (c) Response from the baseline model with ASD added; (d) Response from the baseline model with both ASD and RegLoRA added; (e) Basic information of the case.

Conclusion

- This paper identifies two forgetting types in MCIT—superficial forgetting, where the model’s response style becomes biased, and essential forgetting, where factual knowledge is lost.
- To address these issues, we propose the SEFE method, which includes two components: the ASD paradigm and RegLoRA. ASD mitigates superficial forgetting by diversifying question types within tasks, improving response style robustness and knowledge assessment. RegLoRA combats essential forgetting by identifying and regularizing critical weight components across LoRAs to preserve knowledge.
- Experiments demonstrate that both ASD and RegLoRA are effective in tackling their respective forgetting types, and together in SEFE, they achieve state-of-the-art performance in mitigating catastrophic forgetting in MCIT.

Future Work

- Do large models really tend to forget more easily?
- How can we stimulate the anti-forgetting abilities of large models?
- Is forgetting truly a bad thing?

A photograph of the Shandong University campus. In the foreground, large white text reads '敬请批评指正！'. In the background, several modern university buildings are visible under a clear blue sky. Numerous black graduation caps are scattered in the air, suggesting a graduation ceremony.

致谢：陈锦茂博士、Sam Kwong院士

学无止境 气有浩然
