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ABSTRACT

The Human visual system works as a filter to allocate more attention to the
attractive and interesting objects for further processing. Visual saliency detection model
simulates this system to perceive the scene, and has been widely used in many vision
tasks, such as segmentation, retrieval, compression, coding, quality assessment, and so
on. With the development of acquisition technology, more comprehensive information,
such as depth cue, inter-image correspondence, or spatiotemporal relationship, is
available to extend single image saliency detection to RGBD saliency detection, co-
saliency detection, or video saliency detection. RGBD saliency detection model focuses
on extracting the salient objects from RGBD images by combining the color and depth
information. Co-saliency detection model introduces the inter-image correspondence
constraint to discover the common salient objects in an image group. The goal of video
saliency detection is to locate the motion-related salient object in video sequences,
which considers the motion cue and spatiotemporal constraint jointly. In this thesis,
comprehensive information is explicitly explore to address the challenges in different
saliency detection tasks. Specially, the main works of this thesis are summarized as
follows:

(1) For the stereoscopic images, considering the quality of the depth map and
multiple cues fusion, a novel saliency detection method is proposed. First, according to
the observation of depth distribution, a confidence measure for depth map is designed
to reduce the negative influence of poor depth map on saliency detection. Moreover, a
novel stereoscopic compactness saliency model is defined by integrating the color and
depth information. In addition, a depth-refined foreground seeds selection mechanism
is presented to assist in foreground saliency calculation by integrating color, depth, and
texture cues. At last, the complementary compactness saliency and foreground saliency
are fused to generate the final saliency map.

(2) In order to fully exploit the depth and inter-image correspondences, this thesis
first attempts to address the co-saliency detection from an RGBD image group, in which
the depth information is introduced as a novel cue in the designed model. In order to

explore the inter-image relationship, the similarity matching methods on two levels are



proposed. The first one is the superpixel-level similarity matching scheme, which
focuses on determining the matching superpixel set for the current superpixel based on
three constraints from other images. The second is the image-level similarity
measurement, which provides a global relationship on the whole image scale and works
as a weighted coefficient for inter saliency calculation. Finally, the cross label
propagation method is proposed to optimize the intra and inter saliency maps in a cross
way, and generate the final co-saliency map.

(3) The existing co-saliency detection methods mainly rely on the designed cues
or initialization, and lack the refinement-cycle. Thus, an effective co-saliency
framework for RGBD images based on the refinement-cycle model is proposed, which
integrates the addition scheme, deletion scheme, and iteration scheme. The addition
scheme is used to enrich the saliency regions through the depth propagation and
saliency propagation. Note that, a novel depth descriptor, named depth shape prior, is
proposed in depth propagation to introduce the depth information and enhance the
identification of co-salient objects. In the deletion scheme, the inter saliency is
formalized as a common probability function to capture the inter-image correspondence.
The iterative optimization scheme is designed to achieve more superior co-saliency
result in a cycle way. The proposed method effectively exploits any existing 2D saliency
model to work well in RGBD co-saliency scenarios.

(4) In order to balance the effectiveness and efficiency for inter-image
correspondence capturing in co-saliency detection, a novel RGBD co-saliency model
is proposed based on hierarchical sparsity reconstruction and energy function
refinement. The multi-image correspondence is formulated as a hierarchical sparsity
reconstruction framework, where the global sparsity reconstruction captures the global
characteristic among the whole image group through a common foreground dictionary,
and the pairwise sparsity reconstruction model utilizes a set of foreground dictionaries
produced by other images to explore local inter-image information. Finally, in order to
improve the intra-image smoothness and inter-image consistency, an energy function
refinement model is proposed, which includes the unary data term, spatial smooth term,
and holistic consistency term.

(5) Combining the spatial saliency in the single frame, the temporal cue in the inter
frames, and the global constraints among the whole video, a novel method to detect the

salient objects in video is proposed based on sparse reconstruction and propagation.
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The single-frame saliency is calculated to represent the spatial saliency in each
individual frame via the sparsity-based reconstruction, where the motion priors are
defined as the motion compactness and uniqueness cues. Then, an efficient sparsity-
based saliency propagation is presented to capture the correspondence in the temporal
space and produce the inter-frame saliency map. Specifically, the salient object is
sequentially reconstructed by the forward and backward dictionaries. Finally, in order
to attain the spatiotemporal smoothness and global consistency of the salient object in
the whole video, a global optimization model is formulated, which integrates unary data
term, spatiotemporal smooth term, spatial incompatibility term, and global consistency

term.
KEY WORDS: Visual saliency detection, co-saliency detection, video saliency

detection, comprehensive information, RGBD images, depth cue, inter-image

correspondence, spatiotemporal constraint.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background and Overview

Human visual system works as a filter to allocate more attention to the attractive
and interesting regions or objects for further processing. Humans can exhibit visual
fixation, which is maintaining of the visual gaze on a single location. Inspired by this
visual perception phenomenon, some visual saliency models focus on predicting human
fixations [1]. In addition, driven by computer vision applications, some visual saliency
models aim at identifying the salient regions from the image or video [2], which has
been applied in image/video segmentation [3,4], image/video retrieval [5,6], image
retargeting [7,8], image compression [9], image enhancement [10-12], video coding
[13], foreground annotation [14], quality assessment [15,16], thumbnail creation [17],
action recognition [18], and video summarization [19]. This thesis mainly focuses on
salient object detection task.

The last decade has witnessed the remarkable progress of image saliency detection,
and a plenty of methods have been proposed and achieved the superior performances,
especially the deep learning based methods have yielded a qualitative leap in
performances. In fact, the human visual system can not only perceive the appearance
of the object, but also be affected by the depth information from the scene. With the
development of imaging devices, the depth map can be acquired conveniently and
accurately, which lays the data foundation for RGBD saliency detection [20]. Generally,
there are three options for 3D depth imaging, i.e., structured light [21], TOF (Time-of-
Flight) [22], and binocular imaging [23]. The structured light pattern (e.g., Kinect)
captures the depth information via the change of light signal projected by the camera,
which can obtain high-resolution depth map. The TOF system (e.g., Camcube)
estimates the depth through the round-trip time of the light pulses, which has good anti-
jamming performance and wider viewing angle. The stereo imaging system takes photo
pair via stereo camera and calculates the object’s disparity based on two-view geometry.

Depth map can provide many useful attributes for foreground extraction from the
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complex background, such as shape, contour, and surface normal. Some examples of
saliency detection with and without depth cue are shown in Fig. 1-1. As can be seen,
utilizing the depth cue, RGBD saliency model achieves superior performance with
consistent foreground enhancement. However, how to effectively exploit the depth
information to enhance the identification of salient object has not yet reached a
consensus, and still needs to be further investigated. Considering the ways of using
depth information, the RGBD saliency detection model can be divided into depth
feature based method and depth measure based method. Depth feature based method
focuses on taking the depth information as a supplement to color feature, and depth
measure based method aims at capturing comprehensive attributes from the depth map

(e.g., shape) through the designed depth measurements. More details will be discussed

in Chapter 2.

Depth Ground truth

Fig. 1-1 Some illustrations of saliency detection with and without depth cue. The first three columns
correspond to the RGB image, depth map, and ground truth, respectively. The fourth column shows
the image saliency detection result using the RC method [25]. The fifth column represents the
RGBD saliency detection result using the ACSD method [65].

In recent years, with the explosive growth of data volume, human need to process
multiple relevant images collaboratively. As an emerging and challenging issue, co-
saliency detection gains more and more attention from researchers, which aims at
detecting the common and salient regions from an image group containing multiple
related images, while the categories, intrinsic attributes, and locations are entirely
unknown [24]. In general, three properties should be satisfied by the co-salient object,

i.e., (1) the object should be salient in each individual image, (2) the object should be
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repeated in most of the images, and (3) the object should be similar in appearance
among multiple images. Some visual examples of co-saliency detection are provided in
Fig. 1-2. In the individual image, all the cows should be detected as the salient objects.
However, only the brown cow is the common object from the image group. Therefore,
the inter-image correspondence among multiple images plays a useful role in
representing the common attribute. On the whole, co-saliency detection methods are
roughly grouped into two categories according to whether the depth cue is introduced,
i.e., RGB co-saliency detection and RGBD co-saliency detection. Further, the RGB co-
saliency detection methods can be divided into some sub-classes based on different
correspondence capturing strategies, i.e., matching based method, clustering based

method, rank analysis based method, propagation based method, and learning based

method.

'“-f_‘“ -:2
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Fig. 1-2 Examples of the co-saliency detection model. The first row presents the input images, and
the second row shows the co-salient object (brown cow) in this group.

Different from image data, video sequences contain more abundant appearance
information and continuous motion cue, which can better represent the characteristics
of the target in a dynamic way. However, the clustered backgrounds, complex motion
patterns, and changed views also bring new challenges to interpret video content
effectively. Video saliency detection aims at continuously locating the motion-related
salient object from the given video sequences by considering the spatial and temporal
information jointly. The spatial information represents the intra-frame saliency in the
individual frame, while the temporal information provides the inter-frame constraints
and motion cues. Fig. 1-3 illustrates some examples of video saliency detection. In this
camel video, both two camels appeared from 40th frame should be detected as the
salient objects through a single image saliency model. However, only the front one is

continuously moving and repeating, which is the salient object in this video. The
3
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differences between co-saliency detection and video saliency detection lie in two
aspects, i.e., (1) The inter-frame correspondence has the temporal property in video
saliency detection rather than in co-saliency detection. For co-saliency detection in an
image group, the common salient objects have the consistent semantic category, but are
not necessarily the same object. By contrast, the salient objects in video are continuous
in the time axis and consistent among different frames; (2) The motion cue is essential
to distinguish the salient object from the complex scene in video saliency detection
model. However, this cue is not included in co-saliency detection model. Similar to the
classification strategy of image saliency detection, the video saliency detection methods
are divided into two categories, i.e., low-level cue based method and learning based
method. For clarity, the low-level cue based method is further grouped into fusion
model and direct-pipeline model according to feature extraction method, and the
learning based method is further divided into supervised method and unsupervised

method.

Fig. 1-3 Examples of the video saliency detection model. The first row is the input video frames,
and the second row shows the salient object in this video, i.e., the front camel.

As stated above, the major relationships among four different visual saliency
detection models are summarized in Fig. 1-4, where the image saliency detection model
is the basis for other three models. With the depth cue, RGBD saliency map can be
obtained from an image saliency detection model. Introducing the inter-image
correspondence, image saliency detection model can be transformed into a co-saliency
detection method. Video saliency detection can be derived from an image saliency
detection model by combining the temporal correspondence and motion cue, or from a
co-saliency detection method by integrating the motion cue. In practice, in order to
obtain superior performance, it is necessary to design a specialized algorithm to achieve
co-saliency detection or video saliency detection, rather than directly transplanting the

image saliency detection algorithms.
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RGBD Saliency
Detection
pept™
Image Saliency Temporal Video Saliency
Detection Motion Detection
Co-saliency
Detection

Fig. 1-4 Relationships between different visual saliency detection models.

1.2 Research Contents and Contributions

In this thesis, we explicitly address the challenges of visual saliency detection with
comprehensive information including depth cue, inter-image correspondence, and
temporal constraint. With these information, we conduct the research on RGBD
saliency detection, co-saliency detection, and video saliency detection. The main
contributions of this thesis are summarized as follows:

(1) A novel saliency detection method for stereoscopic images is presented based
on depth confidence analysis and multiple cues fusion. According to the observation of
depth distribution, a depth confidence measure is introduced into the model to reduce
the negative influence of poor depth map. Moreover, the compactness saliency is
computed by integrating the color and depth information, and the foreground saliency
is calculated by using the multiple cue contrast with depth-refined foreground seeds
selection mechanism. Finally, these two parts are fused to generate the final saliency
result.

(2) An effective model is proposed to detect the co-salient objects from the RGBD
images, where the depth information is demonstrated to be served as a useful
complement for co-saliency detection. In this work, the similarity matching models at
superipixel and image levels are designed to constrain the inter saliency map generation,
which is robust to the complex backgrounds. The Cross Label Propagation (CLP)

scheme is proposed to optimize the co-saliency model in a cross way. Moreover, a new
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dataset for RGBD co-saliency detection with the corresponding pixel-level ground truth
1s constructed.

(3) An iterative framework for RGBD co-saliency detection is provided, which
utilizes the existing single saliency maps as the initialization, and generates the final
RGBD co-saliency map by using a refinement-cycle model. In this work, a novel depth
descriptor, named depth shape prior, is proposed to capture the shape attributes from
the depth map and enhance the identification of co-salient objects from RGBD images.
In addition, a superpixel-level common probability function among multiple images is
calculated to exploit the inter-image corresponding relationship in the deletion scheme,
and the iterative updating strategy is presented to obtain more homogeneous and
consistent co-saliency result in the iteration scheme.

(4) A co-saliency detection method for RGBD images is designed based on
hierarchical sparsity reconstruction and energy function refinement. In this work, the
corresponding relationship among multiple images is simulated as a hierarchical
sparsity framework, where the global inter saliency reconstruction model describes the
inter-image correspondence from the perspective of the whole image group via a
common reconstruction dictionary, and the pairwise inter saliency reconstruction model
utilizes a set of foreground dictionaries produced by other images to capture local inter-
image information. Moreover, an energy function refinement model is proposed to
improve the intra-image smoothness and inter-image consistency.

(5) An effective method to detect the salient objects in video is demonstrated based
on sparse reconstruction and propagation. The sparsity-based saliency reconstruction
model is designed to generate single-frame saliency map, making the best use of the
static and motion priors. The sparsity-based saliency propagation with the forward-
backward strategy is presented to capture the correspondence in the temporal space and
produce inter-frame saliency map. In order to attain the global consistency of the salient
object in the whole video, a global optimization model including the unary data term,
spatiotemporal smooth term, spatial incompatibility term, and global consistency term,

is formulated.
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1.3 Chapter Arrangement

Chap. 1: Introduction Chap. 2: Related Work

RGBD Saliency Detection Co-saliency Detection Video Saliency Detection

Inter-

Depth Depth Temporal

Cue : Cue image Informan
. Constrain tion
‘ ' '
DCMC in Chap. 3 : MCLPin | | I€Sin | | HSCSin : SRPin Chap. 7
: Chap. 4 Chap. 5 Chap. 6 :

Chap. 8: Conclusion and Future Work

Fig. 1-5 Overview of the organization of this thesis.

This thesis is organised into eight chapters. As shown in Fig. 1-5, the main topics
in each chapter are briefly summarized as follows:

Chapter 1 introduces the background and overview of visual saliency detection,
and summarizes the main research contents and contributions of this thesis.

Chapter 2 reviews different types of saliency detection algorithms including
saliency detection, co-saliency detection, and video saliency detection. Moreover, this
chapter also introduces the benchmark datasets and evaluation metrics, which lays the
foundation for subsequent researches.

Chapter 3 gives the details of the stereoscopic saliency detection method based on
depth confidence analysis and multiple cues fusion. First, the framework of the
proposed method is introduced, including depth confidence measure, graph
construction, compactness saliency using color and depth cues, foreground saliency
using multiple cues contrast, and saliency map generation. Then, experiments on two
publicly available stereo datasets demonstrate that the proposed method performs better
than other state-of-the-art approaches. Finally, a summary is made at the end of this

chapter.
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Chapter 4 demonstrates a co-saliency detection method for RGBD images based
on multi-constraint feature matching and cross label propagation. The technical details
of the framework are provided, which includes the intra saliency detection, inter
saliency detection, and optimization. The comprehensive experiments on two RGBD
co-saliency datasets, including the comparison with state-of-the-art methods and
ablation studies, demonstrate the effectiveness of the proposed model. Finally, the
method is summarized at the end of this chapter.

Chapter 5 presents an iterative co-saliency framework for RGBD images. Three
main parts of the proposed framework are introduced, including the addition scheme,
deletion scheme, and iteration scheme. The comprehensive comparisons and
discussions on two RGBD co-saliency datasets demonstrate that the proposed method
outperforms other state-of-the-art saliency and co-saliency models. Finally, a summary
is made at the end of this chapter.

Chapter 6 provides the detailed explanations on the hierarchical sparsity based co-
saliency detection framework for RGBD images. First, the intra saliency calculation,
hierarchical inter saliency detection based on global and pairwise sparsity
reconstructions, and energy function refinement are detailed. Then, experiments and
ablation studies on two RGBD co-saliency benchmarks demonstrate that the proposed
method outperforms the state-of-the-art algorithms both qualitatively and quantitatively.
Finally, the conclusion is drawn at the end of this chapter.

Chapter 7 describes the video saliency detection method by using sparsity-based
reconstruction and propagation. Three progressive steps of the proposed framework are
introduced, i.e., single-frame saliency reconstruction, inter-frame saliency propagation,
and global optimization. Then, the comprehensive experiments and analyses on three
challenging video saliency datasets demonstrate that the proposed method outperforms
the state-of-the-art saliency, co-saliency, and video saliency models. At last, the
proposed method is summarized at the end of this chapter.

Chapter 8 concludes the thesis and sheds the light on future work in visual saliency

detection.
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Chapter 2 Literature Review and Preliminary Work

In this chapter, the related works on saliency detection, co-saliency detection, and
video saliency detection are firstly reviewed. Then, the benchmark datasets for different
saliency detection tasks are introduced. Finally, the evaluation metrics of saliency

detection are presented.

2.1 Saliency Detection

2.1.1 RGB Saliency Detection

The last decade has witnessed the remarkable progress of image saliency detection,
and a plenty of methods have been proposed and achieved the superior performances,
especially the deep learning based methods have yielded a qualitative leap in
performances. Following [2], image saliency detection methods can be classified into
bottom-up model [25-39] and top-down model [40-55].

Bottom-up model is stimulus-driven, which focuses on exploring low-level vision
features. Some visual priors are utilized to describe the properties of salient object based
on the visual inspirations from the human visual system, such as contrast prior [25],
background prior [29, 36], and compactness prior [33]. In addition, some traditional
techniques are also introduced to achieve image saliency detection, such as sparse
representation [27], cellular automata [30], random walks [31], low-rank recovery [34],
Bayesian theory [35], and frequency domain analysis [39]. Top-down model is task-
driven, which utilizes supervised learning with labels and achieves high performance.
Especially, deep learning technique has been demonstrated the powerful ability in
saliency detection. Some hierarchical deep networks for saliency detection are proposed,
such as SuperCNN [44], and DHSNet [47]. In addition, the multi-scale or multi-context
deep saliency network is proposed to learn more comprehensive features, such as deep
contrast network [46], network with short connections [49], multi-context deep learning
framework [52], and multi-scale deep network [53]. The symmetrical network is also

introduced in saliency detection, such as the encoder-decoder fully cnvolutional
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networks [50]. Moreover, some deep weakly supervised methods for salient object
detection are proposed by using the image-level supervision [54] or noisy annotation
[55].

2.1.2 RGBD Saliency Detection

Different from image saliency detection, RGBD saliency detection model
considers the color information and depth cue together to identify the salient object. As
a useful cue for saliency detection, depth information is usually utilized in two ways,
i.e., directly incorporating as the feature and designing as the depth measure. Depth
feature based method [56-63] focuses on using the depth information as a supplement
to color feature. Depth measure based method [64-70] aims at capturing comprehensive
attributes from the depth map (e.g. shape and structure) through the designed depth
measures.

In [58], the color, luminance, texture, and depth features were extracted from the
RGBD images to calculate the feature contrast maps, and the fusion and enhancement
schemes were utilized to produce the final 3D saliency map. Peng ef al. [59] calculated
the depth saliency through a multi-contextual contrast model, which considers the
contrast prior, global distinctiveness, and background cue of depth map. Moreover, a
multi-stage RGBD saliency model combining the low-level feature contrast, mid-level
region grouping, and high-level prior enhancement was proposed. Recently, deep
learning has been successfully applied to RGBD saliency detection. Qu et al. [61]
designed a CNN to automatically learn the interaction between low-level cues and
saliency result for RGBD saliency detection. The local contrast, global contrast,
background prior, and spatial prior were combined to generate the raw saliency feature
vectors, which are embedded into a CNN to produce the initial saliency map. Finally,
Laplacian propagation was introduced to further refine the initial saliency map and
obtain the final saliency result. In addition to the multi-modal fusion problem that
previous RGBD salient object detection focus on, Han et al. [62] firstly exposed the
cross-modal discrepancy in the RGBD data and proposed two cross-modal transfer
learning strategies to better explore modal-specific representations in the depth
modality. This work is the pioneering one that involves the cross-modal transfer
learning problem in RGBD salient object detection. In [63], Chen ef al. innovatively

modelled the cross-modal complementary part including the RGB and depth data as a

10
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residual function for RGBD saliency detection. Such a re-formulation elegantly posed
the problem of exploiting cross-modal complementarity as approximating the residual,
making the multi-modal fusion network to be really complementarity-aware. In this
work, the high-level contexts and low-level spatial cues were well-integrated, and the
saliency maps were enhanced progressively.

In order to capture the comprehensive and implicit attributes from the depth map
and enhance the identification of salient object, some depth measures are designed, such
as anisotropic center-surround difference measure [65], local background enclosure
measure [67], and depth contrast increased measure [69].

» In[65], Ju et al. proposed an Anisotropic Center-Surround Difference (ACSD)
measure with 3D spatial prior refinement to calculate the depth-aware saliency map.

» Since the backgrounds always contain the regions that are highly variable in
depth map, some high contrast background regions may induce false positives. To
overcome this problem, Feng et al. [67] proposed a Local Background Enclosure (LBE)
measure to directly capture salient structure from depth map, which quantifies the
proportion of object boundary located in front of the background.

» The salient objects are always placed at different depth levels and occupy small
areas according to the domain knowledge in photography. Based on this observation,
Sheng et al. [69] proposed a Depth Contrast Increased (DCI) measure to pop-out the
salient object through increasing the depth contrast between the salient object and
distractors.

» Wang et al. [70] proposed a multistage salient object detection framework for
RGBD images via Minimum Barrier Distance (MBD) transform and multilayer cellular
automata based saliency fusion. The depth-induced saliency map was generated
through the FastMBD method, and the depth bias and 3D spatial prior were used to fuse
different saliency maps at multiple stages.

Depth feature based method is an intuitive and explicit way to achieve RGBD
saliency detection, which uses the depth information as an additional feature to
supplement color feature, but ignores the potential attributes (e.g., shape and contour)
in the depth map. By contrast, depth measure based method aims at exploiting these
implicit information to refine the saliency result. However, how to effectively exploit
the depth information to enhance the identification of salient object is a relatively
difficult work.

11
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2.2 Co-saliency Detection

In co-saliency detection, the inter-image correspondence is introduced as the
common attribute constraint to discriminate the common objects from all the salient
objects. To achieve co-saliency detection, some low-level or high-level features are
firstly extracted to represent each image unit (e.g., superpixels), where the low-level
feature describes the heuristic characteristics (e.g., color, texture, luminance), and the
high-level feature captures the semantic attributes through some deep networks. Then,
using these features, intra and inter saliency models are designed to explore the saliency
representation from the perspectives of the individual image and inter image,
respectively. For inter-image constraints capturing, different techniques are introduced,
such as clustering, similarity matching, low rank analysis, and propagation. Finally,
fusion and optimization schemes are utilized to generate the final co-saliency map.

In this section, we discuss two categories of co-saliency detection methods
according to the different data, i.e., RGB co-saliency detection and RGBD co-saliency
detection. Obviously, different from the RGB co-saliency detection, RGBD co-saliency
detection model needs to combine the depth constraint with inter-image correspondence
jointly. In addition, similar to the RGBD saliency detection, the depth cue can be used

as an additional feature or a measure in RGBD co-saliency detection methods.
2.2.1 RGB Co-saliency Detection

In this subsection, some RGB co-saliency detection models based on different
correspondence capturing strategies are reviewed, i.e., matching based method [71-78],
clustering based method [79], rank analysis based method [80,81], propagation based
method [82,83], and learning based method [84-87].

In most of the existing methods, inter-image correspondence is simulated as a
similarity matching process among basic units. As a pioneering work, Li and Ngan
[71] proposed a co-saliency detection model for an image pair, where the inter-image
correspondence is formulated as the similarity between two nodes through the
normalized single-pair SimRank on a co-multilayer graph. However, this method is
only applicable to image pairs. Liu et al. [76] proposed a hierarchical segmentation
based co-saliency detection model, where the inter-image correspondence is formulated
as the global similarity of each region.

12
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Clustering is an effective way to build the inter-image correspondence, where
the co-salient regions should be assigned to the same category. A cluster-based co-
saliency detection algorithm without heavy learning for multiple images was proposed
in [79]. Taking the cluster as the basic unit, an inter-image clustering model was
designed to represent the multi-image relationship by integrating the contrast, spatial,
and corresponding cues. The proposed method achieved a substantial improvement in
efficiency.

Ideally, feature representations of co-salient objects should be similar and
consistent, thus, the rank of feature matrix should appear low. Cao et al. [80]
proposed a fusion framework for co-saliency detection based on rank constraint, which
is valid for multiple images and also works well on single image saliency detection.
The self-adaptive weights for fusion process were determined by the low-rank energy.
Moreover, this method can be used as a universal fusion framework for multiple
saliency maps.

Propagation scheme among multiple images is presented to capture the inter-
image relationship. A co-saliency detection method based on two-stage propagation
was proposed in [82], where the inter-saliency propagation stage is utilized to discover
common properties and generate the pairwise common foreground cue maps, and the
intra-saliency propagation stage aims at further suppressing the backgrounds and
refining the inter-saliency propagation maps.

Recently, learning based methods for RGB co-saliency detection attract more
and more attention and achieve competitive performance. In [84], Zhang et al.
proposed a co-saliency detection model from deep and wide perspectives under the
Bayesian framework. From the deep perspective, some higher-level features extracted
by the convolutional neural network with additional adaptive layers were used to
explore better representations. From the wide perspective, some visually similar
neighbors were introduced to effectively suppress the common background regions.
This method is a pioneering work to achieve co-saliency detection by using deep
learning, which mainly uses the convolutional network to extract better feature
representations of the target. With the FCN framework, Wei et al. [85] proposed an end-
to-end group-wise deep co-saliency detection model. First, the semantic block with 13
convolutional layers was utilized to obtain the basic feature representation. Then, the

group-wise feature representation and single feature representation were captured to

13
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represent the group-wise interaction information and individual image information,
respectively. Finally, the collaborative learning structure with the convolution-
deconvolution model was used to output the co-saliency map. The overall performance
of this method is satisfactory, but the boundary of the target needs to be sharper. The
model aims to learn a predictor for each instance through maximizing inter-class
distances and minimizing intra-class distances. The theory is to gradually learn from
the easy/faithful samples to more complex/confusable ones. Zhang et al. [86] proposed
anovel framework for co-saliency detection by integrating the Multi-Instance Learning
(MIL) regime into Self-Paced Learning (SPL) paradigm. Metric learning was
introduced into co-saliency detection in [87], which jointly learns discriminative feature
representation and co-salient object detector via a new objective function. This method
has the capacity to handle the wide variation in image scene and achieves superior

performance.

2.2.2 RGBD Co-saliency Detection

Combining the depth cue with inter-image correspondence, RGBD co-saliency
detection can be achieved. Limited by the data sources, only a few of methods are
proposed to achieve RGBD co-saliency detection. Fu et al. [88] introduced the RGBD
co-saliency map into an object-based RGBD co-segmentation model with mutex
constraint, where the depth cue is utilized to enhance identification of common
foreground objects and provide local features for region comparison. In [89], Song et
al. proposed a bagging-based clustering method for RGBD co-saliency detection. The
inter-image correspondence was explored via feature bagging and regional clustering.
Moreover, three depth cues, including average depth value, depth range, and the
Histogram of Oriented Gradient (HOG) on the depth map, were extracted to represent
the depth attributes of each region. In this thesis, in order to further promote the
development of this direction, three new proposed algorithms around this topic will be

introduced.

2.3 Video Saliency Detection

Video sequences provide the sequential and motion information in addition to the

14
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color appearance, which benefit for the perception and identification of scene. The
salient object in video is defined as the repeated, motion-related, and distinctive target.
The repeated attribute constrains the salient object that should appear in most of the
video frames. The motion-related characteristic is consistent with the human visual
mechanism that the moving object attracts more attention than the static one. The
distinctive property indicates the object should be prominent with respect to the
background in each frame. Most of the video saliency detection methods are dedicated
to exploiting the low-level cues (e.g., color appearance, motion cue, and prior constraint)
[90-102]. Only a few works focus on learning the high-level features and extracting the

salient object in video through a learning network [103-107].

2.3.1 Low-level Cue Based Video Saliency Detection

According to the way of spatiotemporal extraction, low-level cue based video
saliency detection method is classified into fusion model and direct-pipeline model, as
shown in Fig. 2-1. For the fusion model, the spatial and temporal features are extracted
to generate the spatial saliency and temporal saliency respectively, then they are
combined to produce the final spatiotemporal saliency. By contrast, the direct-pipeline
model directly extracts the spatiotemporal feature to generate the final spatiotemporal

saliency in a straightforward and progressive way without any branches.

Direct Pipeline

Spatiotemporal I Spatioten‘.lporal | _Video \
feature modeling saliency map)
. ( \
Input video . :
—»| Pre-processing . Spatial
sequences Spatial feature —P saliency _\'

Video
saliency map

Temporal ; Temporal }

feature Saliency )

\.

Fusion Model
Fig. 2-1 Framework of low-level cue based video saliency detection.

Fusion model fuses the spatial saliency and temporal saliency to achieve video
saliency, where the spatial cue represents the intra-frame information in each frame and
the temporal cue describes the inter-frame relationship among multiple frames.

For spatial saliency detection, some techniques and priors in image saliency
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detection can be used, such as sparse reconstruction, low-rank analysis, center-surround
contrast prior, and background prior. For example, sparse reconstruction was utilized to
discover the regions with high center-surround contrast [90], the static saliency map
was generated via feature contrast in compressed domain [92], the global contrast and
spatial sparsity were used to measure the spatial saliency of each superpixel [94], the
background prior was utilized to calculate the spatial saliency [99], and color contrast
was used to define the color saliency [100].

For temporal saliency, the motion cue is exploited to represent the moving objects
in the video. In [90], the target patch was reconstructed by overlapping patches in
neighboring frames. Fang et al. [92] exploited the motion vectors extracted from the
video bitstream to calculate the feature differences between DCT blocks. The
superpixel-level temporal saliency was evaluated by motion distinctiveness of motion
histograms in [94]. Xi et al. [99] used the SIFT flow and bidirectional consistency
propagation to define the temporal background prior. In [100], the motion gradient
guided contrast computation was utilized to define the temporal saliency.

In most of the fusion based models, fusion strategy is not a key issue. Some simple
strategies have been developed, such as a fusion scheme considering the saliency
characteristic [92], an adaptive fusion method at the pixel level [94], a simple addition
strategy [99]. In [100], Chen et al. conducted the modeling-based saliency adjustment
and low-level saliency fusion to produce the fusion result. Furthermore, the low-rank
coherency guided spatial-temporal saliency diffusion and saliency boosting strategies
were adopted to improve the temporal smoothness and saliency accuracy.

Direct-pipeline model directly extracts the spatiotemporal feature to generate the
final spatiotemporal saliency in a straightforward and progressive way.

In [91], the stacked temporal slices along X-T and Y-T planes were used to
represent the spatiotemporal feature, and the motion saliency was calculated by low-
rank and sparse decomposition, where the low-rank component corresponds to the
background, and the sparse proportion represents the moving foreground object.\par

Optical flow and its deformations are utilized to define the spatiotemporal feature.
Wang et al. [95] presented a spatiotemporal saliency model based on gradient flow field
and energy optimization, which is robust to complex scenes, various motion patterns,
and diverse appearances. The gradient flow field represented the salient regions by

incorporating the intra-frame and inter-frame information. In [101], Liu ef al. presented
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a progressive pipeline for video saliency detection, including the superpixel-level graph
based motion saliency, temporal propagation, and spatial propagation. The motion
saliency was measured by the shortest path on the superpixel-level graph with global
motion histogram feature. Guo et al. [102] introduced a salient object detection method
for video from the perspective of object proposal via a more intuitive visual saliency
analysis. The salient proposals were firstly determined by spatial saliency stimuli and
contrast-based motion saliency cue. Then, proposal ranking and voting schemes were
conducted to screen out non-salient regions and estimate the initial saliency. Finally,
temporal consistency and appearance diversity were considered to refine the initial
saliency map. It is worth learning that object proposal provides a more comprehensive
and high-level representation to detect the salient object.

In addition, motion knowledge is used to capture the spatiotemporal feature. Kim
et al. [96] exploited the random walk with restart to detect the salient object in video,
where the temporal saliency calculated by motion distinctiveness, temporal consistency,
and abrupt change is employed as the restarting distribution of random walker. In
[97,98], the spatial edge and motion boundary were incorporated as the spatiotemporal
edge probability cue to estimate the initial object on the intra-frame graph, and the
spatiotemporal saliency was calculated by the geodesic distance on the inter-frame
graph.

In summary, the fusion model is a more intuitive method compared with the direct-
pipeline model. Moreover, the existing image saliency methods can be directly used to
compute the spatial saliency, which lays the foundation for spatiotemporal saliency

calculation. Therefore, most of the methods pay more attention to this type.

2.3.2 Learning Based Video Saliency Detection

The supervised learning method aims at learning the spatiotemporal features for
video saliency detection by means of a large number of labelled video sequences. Le et
al. [104] proposed a deep model to capture the SpatioTemporal deep Feature (STF),
which consists of the local feature produced by a region-based CNN and the global
feature computed from a block-based CNN with temporal-segments embedding. Using
the STF feature, random forest and spatiotemporal conditional random field models
were introduced to obtain the final saliency map. In [105], Wang et a/.designed a deep
saliency detection model for video, which captures the spatial and temporal saliency
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information simultaneously. The static network generated the static saliency map for
each individual frame via the FCNs, and the dynamic network employed frame pairs
and static saliency map as input to obtain the dynamic saliency result. Le et al. [106]
proposed an end-to-end 3D fully convolutional network for salient object detection in
video, which contains an encoder network and a decoder network.

Compared with supervised learning methods, only a few works focus on
unsupervised learning model. As a pioneering work, Li et al. [107] proposed an
unsupervised approach for video salient object detection by using the saliency-guided
stacked autoencoders. First, saliency cues extracted from the spatiotemporal neighbors
at three levels (i.e., pixel, superpixel, and object levels) were combined as a high-
dimensional feature vector. Then, the stacked autoencoders were learned in an
unsupervised manner to obtain the initial saliency map. Finally, some post-processing
operations were used to further highlight the salient objects and suppress the distractors.
In this method, manual intervention will be further reduced if the hand-crafted saliency
cues are automatically learned from the network.

For video saliency detection, motion cue is crucial to suppress the backgrounds
and static salient objects, especially in the case of multiple objects. In general, optical
flow is a common technique to represent the motion attribute. However, it is time-
consuming and sometimes inaccurate, which will degenerate the efficiency and
accuracy. Therefore, some deep learning based methods directly embed the continuous
multiple frames into the network to learn the motion information and avoid the optical
flow calculation. Of course, the video frame and optical flow can be simultaneously
embedded into the network to learn the spatiotemporal feature. However, the first
option may be better in terms of efficiency. In addition, the salient objects should be
consistent in appearance among different frames. Therefore, some techniques, such as
energy function optimization, are adopted to improve the consistency of the salient

object.

2.4 Benchmark Datasets

In this section, the benchmark datasets for image saliency detection, co-saliency
detection, and video saliency detection are introduced, respectively.

For image saliency detection, a number of datasets have been constructed over the
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past decade, including some large datasets with pixel-level annotations, such as DUT-
OMRON [37], HKU-IS [53], MSRA10K [108], and XPIE [109], as listed in Table 2-1.
Benefiting from the growth of data volume, deep learning based RGB saliency
detection methods have achieved superior performance. In contrast, the datasets with
pixel-wise ground truth annotations for RGBD saliency detection are relatively
inadequate, which only consist of NLPR dataset [59] and NJUD dataset [65], as listed
in the last two rows of Table 2-1. The NLPR dataset includes 1000 RGBD images with
the resolution of 640640, where the depth maps are captured by Microsoft Kinect. The
NJUD dataset is released on 2015, which includes 2000 RGBD images with the
resolution of 600x600. The depth map in the NJUD dataset is estimated by the stereo

images.
Table 2-1 Brief introduction of saliency detection for RGB image and RGBD images.
Dataset Image Max Depth Object Background
number resolution attribute property property
ACSD [39] 1000 400 X 400 - single, clean, simple
moderate
ECSSD [26] 1000 400<400 - single, large clean, simple
DUT-OMRON [37] 5168 400 X400 - single, small complex
MSRA10K [108] 10000 400400 - single, large clean, simple
PASCAL-S [38] 1000 500 500 - multiple, simple
moderate
HKU-IS [53] 850 400 X 400 - multiple, clean
moderate
XPIE [109] 4447 300 X 300 . single, complex
moderate
STEREO [56] 797 1200 X 900 depth single, diverse
estimation moderate
NLPR [59] 1000 640 X 640 Kinect single, diverse
capturing moderate
NJUD [65] 2000 600X 600 depth single, diverse
estimation moderate

For co-saliency detection, five RGB datasets and two RGBD datasets are
commonly used for evaluation, as listed in Table 2-2. MSRC [110] is a challenging
dataset with complex background, which contains 7 image groups of totally 240 images
with manually pixel-wise ground truth. The iCoseg [111] dataset consists of 38 image
groups of totally 643 images, and the manually labeled pixel-wise ground-truth masks
is also provided. Image Pair [71] dataset only contains image pairs, whereas other
datasets usually include more than two images in each group. A larger co-saliency

detection dataset named Cosal2015 is constructed in [112], which consists 02015 RGB
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images distributed in 50 image groups with pixel-wise ground truth. INCT2016 [113]
is a more challenging dataset with larger appearance variation, indefinite number of
targets, and complicated backgrounds, which contains 291 images distributed in 12
categories with pixel-level ground truth. There are two commonly used datasets with
pixel-level hand annotations for RGBD co-saliency detection. One is the RGBD
Coseg183 dataset [88], which contains 183 RGBD images in total that distributed in 16
image groups. The other one is the RGBD Cosal150 dataset [114], which collects 21
image groups containing a total of 150 RGBD images.

Table 2-2 Brief introduction of co-saliency detection datasets.

Image Group  Group Depth Object Background

Dataset Resolution

number  number size attribute property property
MSRC [110] 240 7 30-53 320210 - complex clean, simple
iCoseg [111] 643 38 4-42 500300 - multiple diverse
Image Pair [71] 210 115 2 128 X100 - single clustered
Cosal2015 [112] 2015 50 26-52 500X333 - multiple clustered
INCT2016 [113] 291 12 15-31 500X 375 - multiple complex
RGBD Kinect .
- X .
Coseg183 [88] 183 16 12-36 640X480 capturing multiple complex
RGBD depth . .
Cosal150 [114] 150 21 2-20 600X 600 estimation single diverse

For video saliency detection, many datasets have been released, such as ViSal [95],
MCL [96], UVSD [101], VOS [107], SegTrackV1 [115], SegTrackV2 [116], and
DAVIS [117], as listed in Table 2-3. The DAVIS dataset is a commonly used and
challenging dataset, which contains 50 video sequences with the fully-annotated pixel-
level ground truth for each frame. The UVSD dataset is a specially designed and newly
established dataset for video saliency detection, which consists of 18 unconstrained
videos with complicated motion patterns and cluttered scenes, and the pixel-wise
ground truth for each frame is available. A very large video saliency detection dataset
named VOS is constructed, which consists of 116103 frames in total that distributed in
200 video sequences. In this dataset, 7467 frames are annotated into binary ground truth,
which is suitable for training and learning a deep model to extract the salient object in

video.
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Table 2-3 Brief introduction of video saliency detection datasets.

Dataset nljlrrirgzr n\lﬁgﬁ(;r Video size Resolution p?(}g z;ty B;(;l;;g)i ?;l;d
SegTrackV1 [115] 244 6 21-71 414 X352 single diverse
SegTrackV2 [116] 1065 14 21-279 640 X360 single diverse

ViSal [95] 963 17 30-100 512X 228 single diverse

MCL [96] 3689 9 131-789 480X270 single, small complex
DAVIS [117] 3455 50 25-104 1920 X 1080 multiple complex
UVSD [101] 6524 18 71-307 352X288 single, small clustered

VOS [107] 116103 200 ~ 500 800X 800 single complex

2.5 Evaluation Metrics

In addition to directly comparing the saliency map with ground truth, some
evaluation metrics are developed to quantitatively evaluate the performance of saliency
detection methods, such as Precision-Recall (PR) curve, F-measure, Receive Operator
Characteristic (ROC) curve, Area Under the Curve (AUC) score, Mean Absolute Error
(MAE), and S-measure.

Precision-Recall (PR) curve and F-measure. By thresholding the saliency map
with a series of fixed integers from 0 to 255, the binary saliency masks are achieved.
Therefore, the precision and recall scores are calculated by comparing the binary mask
with the ground truth. The PR curve is drawn under different precision and recall scores,
where the vertical axis denotes the precision score, and the horizontal axis corresponds
to the recall score. The closer the PR curve is to the coordinate (1,1), the better
performance achieves. In order to comprehensively evaluate the saliency map, a
weighted harmonic mean of precision and recall is defined as F-measure [2], which is

expressed as:

o (1 +p’ )Precision x Recall @-1)

P B x Precision + Recall

where S is generally set to 0.3 for emphasizing the precision as suggested in [39].
Receive Operator Characteristic (ROC) curve and AUC score. The ROC curve
describes the relationship between the false positive rate (FPR) and true positive rate

(TPR), which is represented as:
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(2-2)

where S., G., and G, denote the set of detected foreground pixels in the binary
saliency mask, the set of foreground pixels in the ground truth, and the set of
background pixels in the ground truth, respectively. The closer the ROC curve is to the
upper right, the better performance achieves. AUC score is the area under the ROC
curve, and the larger, the better.

Mean Absolute Error (MAE). MAE score directly evaluates the difference

between the continuous saliency map S and ground truth G directly:

1 iilS (x.)=G(x.y) (2-3)

wX h x=1 y=1

MAE =

where w and # represent the width and height of the image, respectively. The smaller
the MAE score is, the more similar to the ground truth, and the better performance
achieves.
S-measure. S-measure [118] evaluates the structural similarity between the
saliency map and ground truth as:
S, =a-S,+(1-a)-S, (2-4)
where @ is set to 0.5 for assigning equal contribution to both region (S,) and object

(S,) similarity.

22



Chapter 3 Saliency Detection for Stereoscopic Images Based on Depth Confidence
Analysis and Multiple Cues Fusion

Chapter 3 Saliency Detection for Stereoscopic Images Based on
Depth Confidence Analysis and Multiple Cues Fusion

Stereoscopic perception is an important part of human visual system that allows
the brain to perceive the depth of scene. However, depth information has not been fully
explored in the existing saliency detection models. In this chapter, a novel saliency
detection method for stereoscopic images is proposed combining the depth confidence
analysis and multiple cues fusion. More details and experiments are introduced in the

following sections.

3.1 Introduction

Saliency detection aims to effectively highlight the salient objects and suppress the
background regions. Most of the previous works on saliency detection mainly
concentrate on RGB color information while ignoring depth/disparity cue [25-55]. In
fact, stereoscopic depth information has demonstrated its usefulness for many computer
vision tasks [3,7,12,13], including saliency detection [56-70]. However, limited by the
depth imaging techniques, sometimes the quality of the depth map is not satisfactory.
As we all know, a good depth map benefits for the saliency detection, whereas a poor
depth map may degenerate the saliency measurement. Consequently, it is vital that
construct a measure to describe the quality of depth map. According to the observation
of depth distribution, a confidence measure for depth map is introduced into the model
to reduce the negative influence of poor depth map on saliency detection. In addition,
in order to make full use of the depth information, a novel compactness saliency model
is defined by integrating color and depth information, and design a depth-refined
foreground seeds selection mechanism to calculate the foreground saliency by using the
multiple cues contrast. Finally, these two complementary saliency models are fused to
generate more robust saliency result.

The main contributions of this method can be summarized as follows: (1)

According to the observation of depth distribution, a depth confidence measure is
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proposed to evaluate the quality of input depth map and reduce the influence of poor
depth map on saliency detection; (2) A stereoscopic compactness model integrating
color and depth information is put forward to compute the compactness saliency; (3) A
depth-refined foreground seeds selection mechanism is presented. The foreground
saliency is measured by contrast between the target regions with seed regions, which

integrate color, depth, and texture cues.

3.2 Proposed RGBD Saliency Model

The flowchart of the proposed stereo saliency detection method is depicted as Fig.
3-1. First, a depth confidence measure is calculated to evaluate the reliability of depth
map, and used in the following processes. The depth confidence measure can reduce
the negative influence of poor depth map on saliency detection. Simultaneously, RGB
image is abstracted into superpixels and represented as a graph. Then, compactness
saliency is calculated by using the color and depth cues. Further, some foreground seeds
are determined via a depth-refined foreground seeds selection mechanism. Taking color,
depth, and texture cues into consideration, the foreground saliency is calculated through
a multiple cues contrast model. Finally, compactness and foreground saliency map are

weighted to obtain the final saliency map.
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[ Depth Confidence Measure | i e R | '/' . N\
| & = | Saliency Using Saliency Map |
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Fig. 3-1 Flowchart of the proposed method.
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3.2.1 Depth Confidence Measure

The quality of depth map is very important for the using of depth cue. Specifically,
a good depth map can provide accurate depth information which benefits for saliency
detection, while the poor depth map may degenerate the saliency measurement. Thus,
a depth confidence measure is proposed in this letter to evaluate the reliability of depth
map. Observing the different qualities of depth maps, we found that a good depth map
often owns clear hierarchy, and the salient objects can be distinctly highlighted from

the backgrounds. Fig. 3-2 shows some examples of different qualities of depth maps.

s " —
?".f':‘ ’
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Fig. 3-2 Different qualities of depth maps. (a) Good depth map, 4, =0.8014 _ (b) Common depth
map, A, =0.3890 . (c) Poor depth map, 4, =0.0422

The input depth map is roughly ranked into three grades, i.e., good, common, and
poor. Based on the observation of depth statistical characteristic, we found that the
values of good depth map usually concentrate on a lower range, whereas the values of
poor depth map tends to distribute on a relatively larger range. Therefore, the mean
value of the whole depth image is an effective parameter to tell them apart. In statistics,
coefficient of variation is used to evaluate the dispersion degree of the data. It is
observed that the poor depth map appears strong concentration compared with other
cases. Thus, the coefficient of variation is introduced in the confidence measure. In
addition, there is a more random distribution for a common depth map, therefore, the
depth frequency entropy is defined to evaluate the randomness of an input depth map.

In summary, the depth confidence measure is defined as:
A, =exp((1-m,)-CV-H)-1 (3-1)
where m, isthe mean value of the depth map, CV =m,/o, is coefficient of variation,

o, 1s the standard deviation of the depth map, and # is the depth frequency entropy

representing the randomness of depth distribution, which is defined as:

L

H =—§Rlog(e) (3-2)

where £ =n/n;, n is the number of pixels in the depth map, » is the number of
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pixels that belong to the region level 7, and L is the levels of depth map. Note that,
the input depth map is firstly normalized to [0, 1]. Then, L-1 thresholds, namely 7,
are used to divide the depth map into L levels. A larger 4, corresponds to more
reliable of the input depth map. As shown in Fig. 3-2, the depth confidence measure
effectively distinguishes different qualities of depth maps according to the statistical

characteristics of depth map.
3.2.2 Graph Construction

The input RGB image is abstracted into some homogenous and compact
superpixels using SLIC method [119]. The number of superpixel N is set to 200 in all
the experiments. Then, a graph G =(V,E) is constructed, where ¥ represents the set
of nodes corresponding to the superpixels, and £ denotes the set of links between
adjacent superpixels.

The color difference /; in Lab color space and depth difference d; between
superpixels v, and v, are defined as

Ly =[e. ¢, (3-3)
and

4, =|d,~d| (3-4)
where ¢ is the mean color value of superpixel v, 4, denotes the mean depth value
of superpixel v, |||, and || represent the ¢,-norm functrion and absolute value
function, respectively.

Therefore, the similarity between superpixels v. and V; is defined as:

@+@W%]

a, = exp[— s (3-5)

(o2

where o is a parameter to control strength of the similarity, which is set to 0.1 in all
experiments.
The affinity matrix W= |:ng:| is defined as the similarity between two adjacent

NxN

superpixels.

(3-6)

0, otherwise

{aw if jeq,
W, =

where , is the set of neighbors of superpixel .
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3.2.3 Compactness Saliency Using Color and Depth Cues

The salient regions incline to have a small spatial variance, whereas the
backgrounds usually have a high spatial variance since their superpixels are often
distributed over the entire image [33]. In fact, depth map also exhibits limited
compactness, that is, the depth values of salient regions are more likely to have a
centralized distribution near the center of image. Motivated by this, the compactness
saliency is calculated by using the color and depth cues. The novel stereoscopic

compactness saliency is defined as:

Ses (i) = [ 1= norm(cc(i) +de(i)) |- Obj (i) (3-7)
where cc(i) 1is the color-based compactness of superpixel v, dc(@) is the depth-
based compactness of superpixel v,, and norm(-) is the min-max normalization
function. Considering the importance of location for saliency detection, objectness
measure Obj(i) [120] is introduced to evaluate the probability of superpixel v, that
belongs to an object. The color and depth-based compactness are defined as:

N
. Zj:l 4N '”bj —H "2
cc(i) = ~
Z,,’:] aij -nj

(3-8)

and

27:1 ay-n; "b.f - P"z "eXp [_ ida'zdi j
ZL a-n;

where ¢; is the similarity between two superxpels after manifold ranking [121], 7,

de(i) = (3-9)

denotes the number of pixels that belong to superpixel V;, which emphasizes the impact
of larger region, b, =[b;.b]] is the centroid coordinate of superpixel v,, p=[c..c,]| is

the spatial position of the image center, and the spatial mean #, =[ 2.4 | is defined

as:

= Zz%‘f"; el (3-10)
and .

- Tt (3-11)
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3.2.4 Foreground Saliency Using Multiple Cues Contrast

Although the stereoscopic compactness saliency model is active on some level,
there are some limitations. For example, when the salient regions have similar
appearances with backgrounds, the regions may be wrongly detected. Hence, a
foreground saliency model based on multiple cues contrast is proposed to mitigate this
problem.

Traditionally, foreground seeds are selected only based on the preliminary saliency
map. Considering the effectiveness of depth information, the foreground seeds are
selected while constraining them to have larger values of compactness saliency and
depth simultaneously. Therefore, a depth-refined foreground seeds selection method
(DRSS) is proposed as shown in Fig. 3-3. First, preliminary seeds are determined by
thresholding segmentation of compactness saliency map, where the threshold 7 is set
to 0.5. Then, the mean depth value of preliminary seeds is used to refine the preliminary

seeds and obtain the final foreground seeds set.
Seg - Preliminary seed s set md 1 > d
T e e

Foreground seeds set

{QS}

Fig. 3-3 Flowchart of depth-refined foreground seeds selection mechanism.
Next, the feature contrast of each superpixel with the foreground seeds is
calculated by using the multiple cues including color, depth, texture, and spatial position.
A superpixel is more likely to be salient if it is more similar to the foreground seeds.

The foreground saliency is computed as follows:
S5 ()= X 4D, (1)-exp -, =1, fo* ), | (3-12)

where ©Q, is the set of foreground seeds, b —#,| denotes the Euclidean distance
between positions of two superpixels, and D, (i./) is the texture similarity between

superpixels using LBP feature [122], which is defined as:

L 51
rl’ T -
SRl
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where & is LBP histogram frequency of superpixel v.. To avoid the problem that
saliency map highlights object boundaries rather than the entire region, manifold
ranking method is used to propagate the foreground saliency map. At last, the map after
propagation is normalized to [0,1], and the final foreground saliency map S is

obtained.

3.2.5 Saliency Map Integration

The compactness and foreground saliency maps are complementary to each other.
Considering the foreground saliency map is based on the compactness saliency result,
we integrate these two saliency maps through a weighted-sum method.

S=ySes+(1=7) Sgs (3-14)
where S is the final saliency map, and 7 is a weighted coefficient that balances the

compactness saliency map Ses and foreground saliency map S .

3.3 Experimental Results

The performance of the prposed method is evaluated on two RGBD saliency
datasets, i.e., NJU-400 [123] and NJUD [65]. The PR curve, F-measure, and MAE score
are introduced as the evaluation metrics. In all experiments, the parameters are set to

L=3, 1,=04, T7,=06, and »=0.8 respectively.

3.3.1 Performance Comparison

The proposed method is compared with § state-of-the-art 2D methods (RC [25],
MR [37], DS [124], MAP [125], DCLC [33], LPS [126], BSCA [30], and RRWR [31]),
and 2 stereo saliency detection methods (SS [56] and ACSD [65]). Fig. 3-4 shows the
evaluation results of the proposed method with 10 state-of-the-art methods on two
datasets. On both datasets, the PR curves show that the proposed method performes
better than other methods. Similarly, the proposed method achieves the best
performance in terms of the average precision, F-measure, and MAE score compared
with other approaches due to the depth confidence analysis and two-stage saliency

computation mechanism. Taking the F-measure on the NJUD dataset as an example,
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the F-measure of ACSD is 0.5552, and the F-measure of our method reaches 0.6055
with the performance gain of 9%. Fig. 3-5 presents visual comparisons of different
saliency detection methods. The proposed method has more similar appearances with
ground truth, and owns clear contour and uniform salient regions. For example, the two
bottles in the second image are detected more complete and accurate, and the
background (e.g., the white box) are effectively suppressed. In the third image, the
background regions (e.g., the distant trees and bare gound) are obviously suppressed by
the proposed method, and the sculpture is highlighted very well. The qualitative and

quantitative comparisons demonstrate the effectiveness of the proposed model.
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Fig. 3-4 Quantitative comparisons of proposed method with 10 state-of-the-art methods. (a) PR
curves of different methods on NJU-400 dataset. (b) Average precision, recall, F-measure, and MAE
of different methods on NJU-400 dataset. (¢) PR curves of different methods on NJUD dataset. (d)
Average precision, recall, F-measure, and MAE of different methods on NJUD dataset.
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Fig. 3-5 Visual comparisons of saliency maps. (a) Input RGB image. (b) Input depth map. (c¢) RC.
(d) RRWR. (e) DCLC. (f) SS. (g) ACSD. (h) Ours. (i) Ground truth.

3.3.2 Parameter Analysis

In this section, the proposed method under different factors including the depth
confidence measure and DRSS scheme is evaluated. The PR curves and quantitative
metrics are shown in Fig. 3-6. In order to reduce the influence of poor depth map in
stereo saliency detection, depth confidence measure 4, is introduced. Comparing the
black line with the blue line in Fig. 3-6(a), it demonstrates that the performance with
4, 1s superior to the result without depth confidence measure. The same conclusion
can be drawn from the comparisons of the first two columns in Fig. 3-6(b). At the stage
of foreground saliency detection, the DRSS mechanism is proposed to acquire more
accurate foreground seeds. As shown in Fig. 3-6, the model with DRSS scheme

achieves better performance with higher quantitative metrics.
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Fig. 3-6 Evaluation of different factors on NJU-400 dataset. (a) PR curves of different factors. (b)
Average precision, recall, F-measure, and MAE score of different factors.
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3.4 Summary

In this chapter, a novel saliency detection model for stereoscopic images was
introduced based on depth confidence analysis and multiple cues fusion. First, the
quality of depth map was considered when introduces the depth information into the
saliency model, and a depth confidence measure was proposed to evaluate the reliability
of depth map. In addition, a novel stereoscopic compactness model integrating color
and depth information was proposed to compute the compactness saliency. To achieve
more robust saliency detection result, a foreground saliency detection method based on
multiple cues contrast was proposed, which includes a depth-refined foreground seeds
selection method. At last, weighted-sum method was used to generate the final saliency
map. Experimental evaluations on two public benchmarks have validated the

advantages of the proposed approach.
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Chapter 4 Co-saliency Detection for RGBD Images Based on
Multi-constraint Feature Matching and Cross Label Propagation

Co-saliency detection aims at extracting the common salient regions from an
image group containing two or more relevant images, which is a newly emerging topic
in computer vision community. Different from most of the existing co-saliency
detection models focusing on RGB image group, this chapter addresses the co-saliency
detection for RGBD images, which utilizes the depth information to enhance the
identification of co-saliency. First, the intra saliency map for each image is generated
by the single image saliency model, while the inter saliency map is calculated based on
the superpixel-level and image-level similarity matching, which represent the
corresponding relationship among multiple images. Then, the Cross Label Propagation
(CLP) is used to refine the intra and inter saliency maps in a cross way. At last, all the
original and optimized saliency maps are integrated to generate the final co-saliency
result. Experiments on two RGBD co-saliency datasets demonstrate the effectiveness

of the proposed model.

4.1 Introduction

Most of the existing co-saliency detection models mainly focus on RGB image
group, which have achieved superior performances [71-84]. However, little work
addresses co-saliency detection for RGBD images. In fact, depth information has
demonstrated its usefulness for many computer vision tasks including saliency
detection, which can reduce the ambiguity with color descriptors and enhance the
identification of the object from complex background [56-70]. Motivated by this, depth
information is introduced as a supplementary cue of color feature for the co-saliency
detection model in this work.

As we all know, it is critical to effectively capture the inter-image correspondence
among multiple images in co-saliency detection. In the existing co-saliency detection

methods, the inter-image correspondence has been modelled as a similarity matching

33



Doctoral Dissertation of Tianjin University

[71-78], a cluster process [79], a rank constraint [80,81], a propagation process [82,83]
or a learning process [84-87]. In this chapter, the inter saliency of a superpixel is defined
as the weighted sum of the intra saliency of corresponding superpixels in other images.
In order to explore the inter-image relationship, the similarity matching methods on two
levels are designed, where the superpixel-level similarity matching scheme focuses on
determining the matching superpixel set for the current superpixel based on three
constraints from other images, and the image-level similarity measurement provides a
global relationship between two images on the whole image scale. Introducing the
multiple constraints into feature matching, the inter-image relationship will become
more stable and robust.

In summary, there are two main issues that need to be focused on: (1) effectively
capture the corresponding relationship among multiple images, and (2) introduce the
depth cue into co-saliency detection. Therefore, a novel co-saliency detection model for
RGBD image is proposed, which integrates the depth cue to enhance the identification
of co-saliency. The similarity matching on superpixel and image levels is designed to
capture the corresponding relationship and constrain the inter saliency map generation.
In addition, a Cross Label Propagation (CLP) method is proposed to optimize the intra

and inter saliency maps in a cross way.

4.2 Proposed Co-saliency Detection Method for RGBD Images

In this section, the proposed co-saliency detection model for RGBD images is
introduced, and the flowchart is shown in Fig. 4-1. First, the basic intra saliency map is
generated by single saliency detection method associating with the depth cue on the
individual image. Then, two similarity matching methods on different scales are
presented to acquire the corresponding relationship among the multiple images.
According to the corresponding relationship and intra saliency map, the inter saliency
map of each image is generated. In order to further improve the consistency of salient
objects and suppress the background regions, a CLP optimization scheme is designed
to refine the intra and inter saliency maps in a cross way. At last, the weighted fusion is

used to produce the final co-saliency result.
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(a) Input RGBD images (b) Intra saliency maps (e) Co-saliency maps

H { i (c) Interimage correspondence

=
. ; 1 4
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b > |8

RGBImages Depth maps

(d) Inter saliency maps -~

Fig. 4-1 Flowchart of the proposed RGBD co-saliency detection model. (a) The input RGBD images.
(b) The intra saliency maps produced by existing single saliency method collaborating with depth
information. (c¢) The inter-image correspondence is obtained by superpixel-level multi-constraint
based similarity matching and image-level hybrid feature based similarity matching. Using the
corresponding relationship and intra saliency maps, the inter saliency maps (d) are generated. At
last, the final co-saliency results (e) are achieved based on CLP scheme.

4.2.1 Intra Saliency Detection

Given N input RGB images {I ’}il and the corresponding depth maps {D’}i

=

Each RGB image 7' is firstly abstracted into superpixels R’ :{r,L}N'

., by using the
SLIC method [119], where ¥, denotes the number of superpixels in image /. Then,
the previous work introduced in Chapter 3 (i.e., DCMC method) is exploited to generate

the intra saliency map for each RGBD images. The intra saliency value of a superpixel
r. inimage I' is assigned with the mean value of all pixels that belong to superpixel

r'in the corresponding intra saliency map, which is denoted as S.. (7). Note that,

any single saliency method can be utilized to generate the intra saliency map. In general,
the more accurate the intra saliency map is, the better it is for the co-saliency
computation using the proposed model. The experimental comparisons of different intra

saliency maps are discussed in Section 4.3.5.

4.2.2 Inter Saliency Detection

For co-saliency detection, we should determine which salient object is the
common one that appears in most of the images. Thus, acquiring the corresponding
relationship among multiple images is the key point of co-saliency detection model. In
the proposed model, the matching methods on two levels are designed to represent the
correspondence among multiple images. The first one is the superpixel-level multi-

constraint based similarity matching scheme, which focuses on determining the
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matching superpixel set for the current superpixel by using three constraints from other
images. The second is the image-level hybrid feature based similarity measurement,
which provides a global relationship on the whole image scale. With the corresponding
relationship, the inter saliency of a superpixel is defined as the weighted sum of the

intra saliency of corresponding superpixels in other images.
1) Superpixel-level multi-constraint based similarity matching

At the superpixel level, the correspondence is represented as the multi-constraint
based matching relationship between superpixels among the multiple images, which
combines the similarity constraint, saliency consistency, and cluster-based constraint.

Similarity constraint. In this work, the color and depth cues are simultaneously
considered to represent the similarity constraint. However, for some RGBD images, the
depth map is seriously noisy, which may degenerate the accuracy of the measurement.
To address this issue, the depth confidence measure 4, is introduced to evaluate the
reliability of depth map as presented in Chapter 3. A larger 4, corresponds to more
reliable of the input depth map. The detailed definition is not described here again. In
the model, 4, is used as a controller for the introduction of depth information. Then,
the similarity matrix S = [S (G )]

N, between two superpixels from the images I’

and 7’/ 1s defined as:
e e, +mina;. 2 |a, ~a|

s(r.r))=exp 5 (4-1)

(o2

where ¢, is the mean color vector of superpixel 7, in the Lab color space, d,
denotes the mean depth value of superpixel r,, A, represents the depth confidence

measure of depthmap »', |||, isthe ¢,-norm function, o is a parameter to control

strength of the similarity, which is fixed to 0.1. Based on the similarity matrix in Eq.
(4-1), the K, nearest superpixels in each of other images for superpixel r, can be
determined. Further, all these superpixels for 7, are composed as the similarity
constraint set @, (7, ).

Saliency consistency. Considering the task of co-saliency detection, the saliency

consistency is introduced as another important cue to constrain the feature matching.
Thus, the saliency similarity between the target superpixel 7, and other superpixels

{r/ }N:l in image 7/ is calculated, and the superpixels with consistent saliency values

are selected to generate the saliency consistency set for 7, as:
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@, (r»’a ) = {rnj Siotra (rtit)_Sinlra (rnj)

where n={L2.-.N,}  and 7, is a threshold to control strength of the saliency

<1 | (4-2)

similarity, which is fixed to 0.3 in all experiments.

Cluster-based constraint. Inspired by the fact that the matching superpixels
should be grouped into the same cluster, therefore, the cluster-based constraint is
introduced to build the cluster-level correspondence. First, K-means++ clustering [127]
is used to group the superpixels {r,,,}N:] into K clusters {C,’;}j; with the cluster
centers {cj.}f:l . Then, the Euclidean distance is utilized to measure and determine the
cluster-level superpixel matching relationship. Specifically, for each superpixel 7,, one
superpixel with the minimum distance in each of other images is determined. Supposed
that the superpixel r, belongs to the cluster C,, and the superpixel r/ belongs to the

cluster C;. The cluster-level nearest superpixels for superpixel 7. are denoted as the
set @,(r):

o, (r,:;):{r;'

where Ed(-) denotes the Euclidean distance function, ¢, and ¢/ are the cluster

arg min Ed(c;,c;)} (4-3)

Cy-qell.K]

centers of clusters C, and C!, respectively.
Similarity matching. Three corresponding sets ®,, ®,, and P; are combined

to determine the matching relationship for each superpixel. The matching matrix
o i Jj . .
ML —[ml(rm’rn )]N,.xN, is defined as:

ml(ri rf):{l’ ifr e{d)l (;;i)md)z(r;;)md%(ré)}. (4-4)

m>°n

0, otherwise

2) Image-level hybrid feature based similarity matching

Enlightened by the observation that the greater similarity between two images
means the greater likelihood of finding the matching regions, thus, a full-image size
similarity descriptor is designed as the weighted coefficient for inter saliency
calculation. To evaluate the image similarity, three types of features are used to
represent the image property from different aspects and guarantee the completeness and
generality of feature selection. First, the color feature, as the common basic feature in
most of the saliency detection methods, is introduced in the proposed method. Inspired
by the fact that similar images should have approximate depth distributions and similar

appearances in salient objects, the depth and saliency histograms are added in the
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feature pool. At last, these feature distances are integrated through a self-adaptive
weighted strategy to evaluate the similarity between two images.

The features used in the proposed method are listed in Table 4-1. The details of the
features are described as follows: the color histogram in the RGB color space is utilized
to represent the color distribution; the texton histogram is used to express the texture
feature; and the GIST feature [128] is introduced to describe the spatial structure of the
scene. In addition, the deep feature produced by VGG network [129] is used to describe
the semantic information of the image. Specifically, the fc7 feature with pre-trained
VGG16 model on ImageNet is directly extracted as the semantic feature. Moreover, the
depth and saliency histograms are used to describe the distributions of the depth map

and single saliency map.

Table 4-1 Image property descriptor and the feature distance.

feature description dim distance

h, RGB histogram 512 d, =z (h.h)

t texton histogram 15 d,=7 (t',t’)
col o

s semantic feature 4096 d,=1 *COS(S',S’)

4 GIST feature 512 d., =1—COS(gi,g‘f)
dep h, depth histogram 512 d, =y (hj,hj )
sal h, saliency histogram 512 d =y (H.h)

Then, the feature distances between two images are summarized in the last column
of Table 4-1, where z°(-) represents the Chi-square distance, and cos(-) denotes the

cosine distance. Finally, these feature distances are fused to evaluate the image
similarity as:

o =1-(a X d,[4+a, d, +a, d) (4-5)
where ¢’ denotes the similarity measurement between images ' and [/, a., @,,

and «, are the coefficients for color, depth, and saliency feature distances, respectively.

A larger ¢’ corresponds to higher similarity between the two input images. The

coefficients are set based on three criteria: (1) The sum of coefficients should be 1, as

a,+a,+a,=1,(2) The color and saliency distances are assigned the same weight for

simplicity. (3) The poor depth map, like a noise, may have a negative influence on the
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measurement. Therefore, a self-adaptive weighted coefficient for depth distance is

designed according to the depth confidence measure 4, .

AT, A =min(4),4)) < T,
! {1/3, otherwise (4-6)
and
al,:ab_:%-(l—ad) (4-7)

where 7, is a threshold to distinguish the degenerated depth map, which is set to 0.2

in the experiments.
3) Inter saliency calculation

After obtaining the corresponding relationship among multiple images through the
superpixel-level feature matching and image-level similarity matching, the inter
saliency of a superpixel is computed as the weighted sum of the intra saliency of
corresponding superpixels in other images. The superpixel-level feature matching result
provides the corresponding relationship between the superpixels among different
images, and the weighted coefficient is defined as the image-level similarity
measurement.

With the matching matrix MI’, image similarity ¢’, and intra saliency map S,

the inter saliency value of each superpixel is assigned as:

N
®
j

. 1 Y . o
S,'mer(rri)ij F;Sanm(ﬁf)‘ml(dnﬁ;/) (4-8)

=1,j#i
where N represents the number of images in the group, VN, denotes the number of
superpixels in image 7/, and ¢’ is the similarity measurement between images I’

and /’.

4.2.3 Optimization and Propagation

In the proposed method, the optimization of saliency map is casted as a “label
propagation” problem, where the uncertain labels are propagated by using two types of
certain seeds, i.e., background and salient seeds. The proposed CLP method is used to
optimize the intra and inter saliency maps in a cross way, which means the propagative
seeds are crosswise interacted. The cross seeding strategy optimizes the intra and inter
saliency maps jointly, and improves the accuracy and robustness.

First, a graph for eachimage G'=(V".E') is constructed, where ' represents the
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set of nodes in image ' which corresponds to the superpixels, and E’ denotes the set
of links between adjacent nodes in image I'.

i

The affinity matrix W' =[WHV]N!XN’ is defined as the similarity between two

adjacent superpixels in image I':

Jet el +4 |a: - |
. i
; exp| — o , ifveV¥,

(4-9)

0 , otherwise

where ¥, is the set of neighbors of superpixel 7.

Taking the optimization of intra saliency map as an example, the detailed
procedures are described as follows. The certain seeds, including foreground labeled
seeds F and background labeled seeds B, are selected to update and optimize the
saliency of unlabeled nodes U . Two thresholds are designed to determine these labeled

seeds.

2 &
TF(S)= —
(S) max(N mZ::'

i

TB(S)= min[ii‘S(r,;)

N,' m=1

S(r, )\,ij (4-10)

,T.WJ (4-11)

where S(,) denotes the intra or inter saliency score of the superpixel 7., TF(S) is

a threshold of saliency map § for foreground seeds selection, 7, is the minimum
threshold for TF(S), TB(S) is a threshold for background seeds selection, and 7,

is the maximum threshold for 7B(S). Then, these thresholds are used to determine a

set of labeled seeds and initialize the saliency score of superpixels. The saliency scores

of superpixels in CLP method are initialized as follows.

1’ ifSimcr (rr;)ZTF(Simcr)
W (m)=1 o, i Ser (7)) STB(Sier) - (4-12)

S (ri ), otherwise

m

Once the initialization is completed, the saliency is propagated using the labeled

seeds on the graph according to the equation:

NV

Vi (1) = 200,75 (7). (4-13)
n=l1

After normalization, the optimized intra saliency map Sk =norm(View') s

achieved, where norm(-) is the min-max normalization function. The optimized inter

saliency map S, is generated using the same procedure conducted on the inter
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saliency map. It should be noted that the inter saliency map is firstly optimized using
the intra saliency map in CLP method. Then, the optimized inter saliency map is used
to update the intra saliency map, since the inter saliency is generated by the intra
saliency map. In order to guarantee the optimization performance, the inter saliency

map is firstly optimized in the proposed model.

4.2.4 Co-saliency Detection

Finally, the initial intra/inter saliency maps and the optimized intra/inter saliency
maps are integrated to generate the final co-saliency map.

. SCLP . SCLP

SiLP = 7/1 ’ Sintra + 72 ’ Sinter + }/3 intra + 7/4 inter (4-14)
where 7, isthe weighted coefficient with Z; 7, =1. Without loss of generality, these

four parameters are all set to 0.25 in experiments.
4.3 Experimental Results

First, the experimental settings including the datasets, implementation details, and
evaluation metrics are introduced. Then, the qualitative and quantitative comparisons
are presented in Section 4.3.2. The evaluation of different parameters are analyzed in

Sections 4.3.3-4.3.5. At last, some degenerated cases are discussed in Section 4.3.6.
4.3.1 Experimental Settings

The proposed co-saliency model is evaluated on the RGBD Cosegl83 dataset [88§]
and RGBD Cosal150 dataset [114] by using four criteria including the PR curve, the
Precision and Recall scores, F-measure, and Mean Absolute Error (MAE) are calculated.
In the proposed method, the number of superpixels is set to 200, the number of clusters
K used in K-means++ is set to 10, the maximum matching number X, for feature
matching is set to 40, and the thresholds for seeds selection are assigned to 7., =0.6
and T, =0.2. The proposed method is implemented in MATLAB 2014a, and all the
experiments are performed on a Quad Core 3.5GHz workstation with 16GB RAM. The
proposed algorithm costs average 41.03 seconds to process one image on the RGBD

Cosall150 dataset. According to statistics, the intra saliency calculation costs 27.86%
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running time, the inter saliency model takes 71.94% running time, and the optimization

stage consumes 0.20% running time.

4.3.2 Comparison with State-of-the-art Methods

The proposed method is compared with some state-of-the-art saliency/co-saliency
detection methods, i.e., RC [25], HS [26], BSCA [30], DRFI [41], ACSD [65], DCMC
[130], SCS [77], CCS [79], and LRMF [81], in which the first six methods are single
saliency detection models and the last three ones are co-saliency methods for RGB
image. In addition, other two optional optimization mechanisms, namely Label
Propagation (LP) and Shared Label Propagation (SLP), are reported as the baselines in
the experiments. The main difference of these three methods lies in the selection of
certain seeds. The LP scheme determines the seeds from their own intra or inter saliency
map. For the SLP mechanism, the intra and inter saliency maps are combined to
determine the common seeds. Then, the selected seeds are shared to optimize the intra
and inter saliency maps simultaneously. By contrast, the propagative seeds are
crosswise interacted for the CLP scheme, and it bridges the gap between the intra
saliency and inter saliency in the process of optimization. Therefore, in principle, the
CLP scheme is more suitable for co-saliency detection due to the interactive
information from intra and inter saliency maps.

Some visual comparisons of different methods on two datasets are illustrated in
Fig. 4-2, which contain five image groups: woman, sculpture, car, yellow flashlight,
and computer. From the figure, even though the images own complex and variable
backgrounds or the salient objects exhibit large variations in shape and direction, the
proposed method effectively highlights the common salient objects from the image
group. Furthermore, the results produced by our model are more accurate and uniform
than other methods. For example, in the woman group, the eyes and mouth of the
woman are wrongly detected as background regions through the SCS model [77], and
some background regions (e.g., the sheds) are also detected as salient regions due to
their complex textures. The same situation is faced to the LRMF method [81], where
the body of the woman is missed and the background regions are wrongly detected. By
contrast, the woman in different images are uniformly detected by the proposed method

with clearly contour, and the background regions are effectively suppressed.

42



Chapter 4 Co-saliency Detection for RGBD Images Based on Multi-constraint
Feature Matching and Cross Label Propagation

e ges
i
&)

3| Bbrepei

RGE
i

o R T

Bi¥reper

ces HE

§ Bo

s

OURS  LRMF
;-
a .

RGE
maps  imges

Ground  Depth
ces Tan i

scs

OURs

Fig. 4-2 Visual examples of different saliency and co-saliency detection methods on two datasets.

The quantitative comparison results in terms of the PR curves, precision and recall
scores, F-measure, and MAE scores are reported in Fig. 4-3. Before comparing with
other methods, the results of the proposed method in different stages are first analyzed,
which include intra and inter saliency modeling, and co-saliency generation with three
different optimization schemes (i.e., LP, SLP, and CLP). It can be observed that (1) the
inter saliency map performs a better result compared with other existing co-saliency
methods, and (2) the performance of co-saliency result with the optimization model is
obviously improved compared with the intra and inter saliency maps individually.
Moreover, consistent with the theoretical analysis, the CLP scheme achieves favorable
performance on the two datasets. For example, the proposed method with CLP
optimization achieves the best performance on the RGBD Cosall50 dataset according
to the comprehensive measures (F-measure = 0.8403, and MAE = 0.1370), and it also
performs the best result on RGBD Cosegl83 dataset in terms of MAE measure (F-
measure = 0.6365, and MAE = 0.0979). For the SLP optimization strategy, its
performance is slightly worse than other methods, where the MAE score is 0.1430 on
the RGBD Cosal150 dataset, and 0.1052 on the RGBD Cosegl83 dataset. The main
reason is that the shared way for seed selection enables reduction in the number of seeds,

which in turn degrades the propagation performance.
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Fig. 4-3 Quantitative performances of different methods on two datasets. Notice that “our*” means
implementing our method using different optimization approaches, where *={LP, SLP, CLP}. (a)-
(c) PR curves, Precision and Recall scores, F-measure, and MAE scores on the RGBD Cosal150
dataset. (d)-(f) PR curves, Precision and Recall scores, F-measure, and MAE scores on the RGBD
Coseg183 dataset.

Compared with other single saliency and co-saliency methods, the proposed model
achieves the highest precisions of the whole PR curves on both of the RGBD Coal 150
and Cosegl83 datasets. In addition, the proposed co-saliency model achieves the best
performance on both two datasets with the highest F-measure and the smallest MAE
score. In terms of the F-measure, the proposed co-saliency model achieves a maximum
percentage gain of 30.67% compared to other saliency results on the RGBD Cosal150

dataset, and the minimum percentage gain also reaches 5.88%. The maximum and
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minimum percentage gains of the MAE score achieve 46.00% and 24.14%, respectively.
On the RGBD Cosegl83 dataset, the proposed method also obtains obvious
performance gains. For example, the F-measure and MAE score are at least increased
by 10.67% and 18.21%, respectively.

In summary, benefiting from the two-level similarity matching and CLP
optimization, the proposed co-saliency detection model achieves superior performance.
The visual comparisons and quantitative analyses demonstrate the effectiveness of the
proposed model. The influence of some parameters will be discussed in the next

subsections.

4.3.3 Evaluation of the Maximum Matching Number

Some experiments on the RGBD Cosal150 dataset are conducted to analyze the
influence of the maximum matching number K, in the procedure of inter saliency
calculation. Considering the parameter K, isonly used to calculate the inter saliency
map, the F-measures of the inter saliency maps are evaluated under different X, , as
shown in Fig. 4-4. From the curve of F-measure with different X, , the inter saliency
maps with different maximum matching numbers achieve the comparable performance
except for the result with X, =10, The main reason is that K, =10 is too small to
obtain a relatively stable and accurate matching result. The performance will become
stable when the K, reaches 30. Considering the number of superpixel in an image is
set to 200 in the experiments, the maximum matching number X, is set to 40 for
balancing the computational complexity and accuracy. In conclusion, the performance
of inter saliency map is not highly sensitive to the parameter X, . In general, due to
the saliency consistency and cluster-based constraint are introduced in our model, the
maximum matching number between superpixels among two images in the process of
feature matching can be set to a larger value, such as the one-fifth of the superpixel

number in an image.
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Fig. 4-4 F-measure of inter saliency map on the RGBD Cosal150 dataset under different maximum
matching numbers.

4.3.4 Evaluation of the Depth Cue

In the proposed model, the depth cue is introduced to assist the identification of
co-salient regions. To evaluate the effect of depth cue on the whole framework, an
experiment on the RGBD Cosal150 dataset is conducted, and the results are shown in
Fig. 4-5 and Table 4-2.

(@) (b)

Fig. 4-5 Visual examples with and without depth information through the proposed co-saliency
detection method. (a) RGB images. (b) Depth maps. (¢) Ground truth. (d) Saliency maps without
depth information. () Saliency maps with depth information.
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For the depth map, in most cases, it is clear and effective, and exhibits great power
in improving the saliency performance, such as the first three rows in Fig. 4-5. The
depth information can be regarded as an effective cue to distinguish the foreground
from the complex background. Therefore, utilizing the depth cue, the complex and
cluttered background regions (such as the stores, other cartoons, and lawns) are
suppressed obviously, and the salient objects are better highlighted. However, in some
cases, the depth map has poor quality and may degrade the performance. To address
this problem, the depth confidence measure is introduced as a weight to control the
contribution of depth information. In this poor quality case, as shown in the last row of
Fig. 4-5, even with the noisy depth information, the proposed model still achieves
relatively satisfying performance similar to the RGB co-saliency model. From the
quantitative measures reported in Table 4-2, without the depth cue, the F-measure of
the proposed model achieves 0.7639, and the MAE score reaches 0.1599. With the
depth cue, the overall performance of F-measure is increased to 0.8403, and the MAE
score is also improved to 0.1370. In summary, all the experiments demonstrate that the
using of the depth information in the proposed model is useful and effective.

Table 4-2 Quantitative evaluations with and without depth cue through the proposed
co-saliency detection method on the RGBD Cosal150 dataset.

without depth with depth percentage gain
F-measure 0.7639 0.8403 10.00%
MAE 0.1599 0.1370 14.32%

4.3.5 Evaluation of the Different Intra Saliency Methods

The proposed method focuses on designing an opened framework to make the
existing saliency detection methods work well in co-saliency scenarios. Therefore, the
experiments on the RGBD Cosal150 dataset are conducted to evaluate the performance
with different intra saliency initializations. In the experiment, five different single
saliency maps produced by HS [26], BSCA [30], DRFI [41], ACSD [65], and DCMC
[130] are used as the intra saliency maps. The PR curves are illustrated in Fig. 4-6, and
some quantitative measures, including the F-measure and MAE score, are reported in
Table 4-3.

In Fig. 4-6, the PR curves of the results using the proposed co-saliency framework
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are higher than those from the original saliency maps. The consistent conclusion can be
drawn from the quantitative comparisons listed in Table 4-3. The F-measure is
improved by the proposed co-saliency model, and the MAE scores also achieves better
performances compared with the previous saliency results. Taking the F-measure as an
example, the proposed co-saliency model achieves a maximum percentage gain of 4.41%
compared to the corresponding intra saliency result, and the average percentage gain
also reaches 2.59%. Similarly, the maximum percentage gains of the MAE scores
achieves 15.75%. Moreover, in general, the better the single saliency map (intra
saliency map) achieves, the better performance of the co-saliency map is. In brief, the
results demonstrate that the proposed model can effectively improve the performance
of the existing single saliency models, and make them work well for co-saliency

detection.

Precision

0 0.1 02 03 04 05 06 07 08 09 1
Recall

Fig. 4-6 PR curves of co-saliency results on the RGBD Cosal150 dataset with different intra saliency
maps. The subscript of “co” means the co-saliency result produced by the proposed co-saliency
model with the CLP optimization and corresponding intra saliency initialization.
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Table 4-3 Quantitative evaluations of co-saliency results with different intra saliency
models on the RGBD Cosal150 dataset.

F-measure MAE
intra saliency 0.7788 0.1806

ACSD
our co-saliency 0.8039 0.1529
intra saliency 0.7318 0.1925

BSCA
our co-saliency 0.7470 0.1731
intra saliency 0.7101 0.2375

HS

our co-saliency 0.7283 0.2063
intra saliency 0.7484 0.1949

DRFI
our co-saliency 0.7814 0.1642
intra saliency 0.8348 0.1498

DCMC
our co-saliency 0.8403 0.1370

4.3.6 Discussion

Some challenging cases of the proposed RGBD co-saliency model are shown in
Fig. 4-7. For the bike group, the salient foreground is very trivial and includes lots of
stuff regions, such as the spokes and back seat. These regions are difficult to detect
completely and accurately through the proposed co-saliency model. For the soda can
group, the scene is relatively complex and cluttered, and the soda can is too small to be
detected as the salient object compared with the computer in each image. Thus, the
small scale object is not detected successfully through the proposed model, especially

in the complex and cluttered scenes.

el
‘.‘- rﬂ‘_—-“ A

Fig. 4-7 Some challenging examples for the proposed RGBD co-saliency detection model. The left
group contains the bike as the common salient object, and the right group includes the orange can
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as the common salient object.

4.4 Summary

In this chapter, a co-saliency detection model for RGBD images was presented,
which focuses on exploring the inter-image correspondence constraint among multiple
images and introducing the depth cue to enhance the identification of co-salient objects.
The similarity constraint, saliency consistency, and cluster-based constraint were
introduced in feature similarity matching to obtain more stable and accurate
corresponding relationship at superpixel level. The image-level similarity descriptor
was designed as the weighted coefficient for inter saliency calculation. In addition, a
CLP optimization strategy was proposed to optimize the intra and inter saliency maps
in a cross way. The comprehensive comparisons and ablation studies on two RGBD co-
saliency detection datasets have demonstrated that the proposed method outperforms
other state-of-the-art saliency and co-saliency models, and verified the effectiveness of

improving the existing saliency models in co-saliency application.
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Chapter 5 An Iterative Co-saliency Framework
for RGBD Images

The existing co-saliency detection methods often generate the co-saliency map
through a direct forward pipeline which is based on the designed cues or initialization,
but lack the refinement-cycle scheme. In this chapter, making full use of depth
information, an iterative RGBD co-saliency framework is proposed, which utilizes the
existing single saliency maps as the initialization, and generates the final RGBD co-
saliency map by using a refinement-cycle model. Three schemes are employed in the
proposed RGBD co-saliency framework, which include the addition scheme, deletion
scheme, and iteration scheme. The addition scheme is used to highlight the salient
regions based on intra-image depth propagation and saliency propagation. The deletion
scheme captures the inter-image constraint to suppress the background regions and
filter the non-common salient regions. The iteration scheme is proposed to obtain more
homogeneous and consistent co-saliency map in a cycle way. Note that, a novel
descriptor, named depth shape prior, is proposed in the addition scheme to introduce
the depth information to enhance identification of co-salient objects. The proposed
method can effectively exploit any existing 2D saliency model to work well in RGBD
co-saliency scenarios. The comprehensive experiments on two RGBD co-saliency

datasets demonstrate the effectiveness of the proposed framework.

5.1 Introduction

The co-salient object in an image group should satisfy two properties
simultaneously, i.e., (1) the objects should be salient in each individual image, and (2)
the objects should repeatedly appear in most of the images. In other words, inter-image
correspondence plays more important role in co-saliency detection [24]. For the first
property of co-saliency detection, the single saliency map produced by the existing
saliency model can be directly considered as an initialization without the need to design

a new algorithm. Moreover, the existing co-saliency detection methods mainly rely on
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the designed cues or initialization, and lack the refinement-cycle. In this chapter, an
effective refinement-cycle framework for RGBD co-saliency detection is proposed,
which integrates the addition scheme, deletion scheme, and iteration scheme. The
addition scheme is used to enrich the saliency regions through the depth and saliency
propagations. Furthermore, the depth information from the RGBD images has been
demonstrated the power and usefulness for many computer vision tasks
[3,7,12,13,58,62,65]. However, in the existing methods, the information of the relevant
and similar objects in a sequence of images is ignored and not exploited. In the addition
scheme, a novel depth descriptor, named depth shape prior, is proposed to capture the
shape attributes from the depth map to improve the co-saliency detection performance.
In the deletion scheme, the inter saliency model is formalized as common probability
function to capture the inter-image correspondence. The iterative optimization scheme
is designed to achieve more superior co-saliency result in a cycle way.

In summary, most of the existing co-saliency methods aim to design a single
forward pipeline which generates the co-saliency map based on the designed cues
directly, but lack the refinement-cycle scheme and ignore the depth information for
RGBD images. Therefore, an iterative RGBD co-saliency framework is proposed,
which utilizes the additional depth information and employs the existing RGB saliency
map as the initialization in a refinement-cycle model to produce the final RGBD co-

saliency map.
5.2 Proposed Iterative Framework

Fig. 5-1 shows the proposed RGBD co-saliency framework framework. The
proposed method is firstly initialized by the existing 2D saliency maps, and then three
schemes are employed to generate the final RGBD co-saliency map. The addition
scheme is used to grow the initialized saliency map from the perspective of intra-image,
the deletion scheme is designed to suppress the non-common regions from the
perspective of inter-image, and the iteration scheme is exploited to obtain more
homogeneous and consistent co-saliency map in a cycle way.

Notations: Given N~ input RGB images {I}V:] and the corresponding depth
maps {Di}il. The M, single saliency maps for image /' produced by the existing

. . . ; M
single image saliency models are represented as S ={S,-},7 . In our method, the
Jj=1
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superpixel-level region is regarded as the basic unit for processing. Thus, each RGB
image 1 is firstly abstracted into superpixels R’ :{rn’,}:':] by using the SLIC

algorithm [119], where ¥, is the number of superpixels in image /'.

ADDITION SCHEME DELETION SCHEME OUTPUT

Depth Saliency Similarity Common RGBD
Propagation Propagation Measurement Probability CO-SALIENCY
ITERATION SCHEME

Fig. 5-1 Flowchart of the proposed RGBD co-saliency framework.

[RGB images]—{lnitialization

INPUT

5.2.1 Initialization

The proposed co-saliency framework aims at discovering the co-salient objects
from multiple images in a group with the assistance of some existing 2D saliency maps.
Therefore, the framework is initialized by some existing saliency maps produced by the
2D saliency models. It is well known that different saliency methods own different
superiority in detecting salient regions. In a way, these saliency maps are
complementary in some regions. Thus, the fused result can inherit the merits of the
multiple saliency maps, and produce more robust and superior detection baseline. In
our method, the simple average function is used to generate a more generalized
initialization result. The initialized saliency map for image I’ is denoted as:

5 (2) 57 25 (%) (5-1)

where S; (rj;) denotes the saliency value of superpixel r, produced by ;" saliency
method for image 7', and M, is the number of saliency maps for image /'. In the
experiments, five saliency methods, including RC [25], HS [26], BSCA [30], RRWR
[31], and DCLC [33], are used to produce the initialized saliency map. Some examples
of the initialized saliency map are shown in Fig. 5-2(¢c). From the figure, the initialized

result provides an impressive baseline for later co-saliency detection.
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(d) (e)

Fig. 5-2 Some examples of the proposed method. (a) RGB image. (b) Depth map. (¢) The initialized
saliency map. (d) The co-saliency map without iteration. (e) The final co-saliency map with iteration.

5.2.2 Addition Scheme

The addition scheme is designed to extend the saliency region based on the intra-
image constraint with two propagation strategies. First, a novel depth descriptor, named
depth shape prior, is proposed to deeply capture the depth cue and produce an RGBD
saliency result in depth propagation. Then, saliency propagation is utilized to further

optimize and improve the saliency result.

1) Depth propagation

After initialization, the merits of the different saliency maps are inherited into the
initialized saliency map. The depth information is introduced into the framework to
enhance the identification of salient objects due to its usefulness in saliency detection.
In general, the depth map owns the following properties:

(1) The salient object appears higher depth value compared to the backgrounds.

(i1) The high quality depth map can provide sharp and explicit object boundary.

(ii1) The interior depth value of the object should be smooth and consistency.

Inspired by these observations, a depth descriptor, namely depth shape prior (DSP),
is proposed to capture the shape attributes from the depth map and improve the
performance of the co-saliency detection by using the depth consistency and shape
attributes. The proposed DSP descriptor is based on depth propagation and region grow.
Several identified superpixels are selected as the seeds first, and then the DSP map can
be calculated via depth constraints.

For each image I',thetop K superpixels with higher initialized saliency values
are selected as the root seeds, which are represented as {r }::] , and the corresponding

DSP map DSPF, is initialized as zero.

For each root seed, a set of child nodes {7} are determined to depict the depth
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shape based on the depth smoothness and consistency constraints. In the / -loop
diffusion, the superpixels direct neighboring the (/-1)-loop child nodes are selected as
the /-loop child nodes only if they satisfy the following two constraints:

(a) Depth smoothness: the depth difference between the neighbor superpixel and
(1-1) -loop child seeds is less than a certain threshold 7;, as |d,’;,, —dﬁ,,_1| <T,, where d,,
is the depth value of the neighbor superpixel 7,,,and d.,, is the average depth value
of (/-1)-loop child seeds.

(b) Depth consistency: the depth difference between the neighbor superpixel and
root seed should be smaller than a specific threshold 7., as |di¢, —dﬁk| <T,, where d., is
the depth value of the root seed .

Be noted that the child node in the first loop diffusion is initialized by the root seed
in the proposed method, and the two thresholds are set to 0.1 and 0.2, respectively. The

DSP value of the child node 7, inthe /-loop is defined as:

d, _d;k

cp,l

DSF; (r;,) =1~ min(

T

i i
dcp,l - dc,lfl | >

) (5-2)
where d.,, denotes the depth value of the child node 7, in the /-loop, d.,, is the
average depth value of (/-1)-loop child node set, and |-| represents the absolute
value function. Then, the next loop diffusion will be continued until there is no
neighboring superpixel satisfies the depth constraints.

In the proposed method, the top & root seeds are selected for each image 1’ to
improve the robustness, and K DSP maps are obtained for each image. Therefore, the
final DSP map is defined as:

DS (1) = 2 S (1) (5-3)
where K is the number of the root seeds, which is fixed to 10 in all the experiments.

To achieve more superior and stable saliency result, the initialized RGB saliency
and the DSP map are combined. Because the bad depth map may degenerate the
accuracy of DSP map generation, the depth confidence measure 4, is introduced to
evaluate the quality of the depth information. Thus, the RGBD saliency that integrates
initialized saliency map and DSP map weighted by depth confidence measure according

to the depth quality is defined as:
S5 (1) =0 25)-5) (2) 25, ) 057 (2) (54
where 4, is the depth confidence measure for image ', S;(7) represents the

initialized saliency value of superpixel ', and DSP'(r,) denotes the DSP value of
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superpixel 7,. The obtained saliency map is normalized into [0,1]. With this depth
confidence measure, the poor-quality depth map will be limited in the combination with
RGB feature to avoid the degradation of the RGBD co-saliency result. Fig. 5-3 shows
some examples of the depth propagation. Comparing with the RGB saliency map, some
background regions around the salient object are effectively suppressed through depth
propagation, such as the lawns in the first image, the roads in the second image, and the
buildings in the third image. Moreover, the RGBD saliency model is more robust. Even
if the quality of depth map is bad, such as the last raw in Fig. 5-3, the proposed model
still achieves better result by highlighting the RGB saliency component while DSP

descriptor can not exploit accurate shape attributes from the poor-quality depth map.

Fig. 5-3 Examples of the depth propagation. (a) RGB image. (b) Depth map. (¢) Ground truth. (d)
The RGB saliency result. (¢) The RGBD saliency result with DSP descriptor.

2) Saliency propagation
With the obtained RGBD saliency map, the saliency propagation is conducted to
further optimize the result. First, the superpixels are classified into three groups based

on the saliency value, which is denoted as the saliency seed superpixels, background
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seed superpixels, and the unknown superpixels. Then, saliency propagation is used to
propagate the saliency of unknown superpixels on the graph from the saliency and
background seeds.

For image /', a graph G'=(v',¢') among superpixels is constructed, where o'
denotes the node set corresponding to the superpixels, and & 1is the link set among the
adjacent nodes. The affinity matrix W' = [WL’]N,XN’ is defined as the similarity between

two adjacent superpixels:

e —cl|| +A,-|d, —d. o
i eXp| — . 2 > J rvl € Q;
Wuv = O (5‘5)

0 , otherwise

where ¢, and d, denote the mean Lab color vector and depth value of the superpixel
', Q. represents the neighbor set of superpixel 7', [, is the 2-norm of vector,
denotes the depth confidence measure, and o is a constant control parameter.

In the proposed method, the seed superpixels are selected based on RGBD saliency
value produced by depth propagation. Then, the top « superpixels with higher
saliency values are considered as the saliency seeds, and the bottom x superpixels
with lower saliency values are treated as the background seeds. In the experiments, &
is set to 10. The initialized propagation score of the superpixel is defined as:

1, ifrle¥,
Si(r)=1 0. ifrew, (5-6)
A (rn’ ), otherwise
where ¥, and ¥, represent the saliency and background seed sets, respectively.
Using the labeled seeds, the saliency is propagated on the graph, and the score with

saliency propagation is achieved by:
CHCAEDATRACY (5-7)

where w,, is the element of the affinity matrix.
5.2.3 Deletion Scheme

The addition scheme is used to improve and optimize the saliency map from the
perspective of intra-image. On the other hand, the inter-image information should be
captured to determine the common attribute of the objects. Therefore, a deletion scheme

is designed to explore the corresponding relationship among multiple images, which
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aims to suppress the common and non-common backgrounds, and highlight the
common salient regions from the perspective of multiple images. In the deletion scheme,
a superpixel-level similarity measurement is constructed to represent the similarity
relationship between two superpixels. Then, a common probability function using the
similarity measurement is defined to calculate the likelihood of each superpixel

belonging to the common regions.

1) Multiple cues based similarity measurement

In the deletion scheme, the color, depth, and saliency cues are combined into a
measurement to evaluate the similarity between two superpixels.

RGB similarity. The color histogram and texture histogram [131,132] are used to
represent the RGB feature on the superpixel level, which are denoted as HC, and
HT, , respectively. Then, the Chi-square measure is employed to compute the feature

difference. Thus, the RGB similarity is defined as:

7 (HC,,

HC!)+ y* (HT,,HT} )
2

(5-8)

i J\_1_
sg(rm,rn)—l

where ' and 7/ are the superpixels in image 7' and 7/, respectively, and 7’ ()
denotes the Chi-square distance function.

Depth similarity. Two depth consistency measurements, namely depth value
consistency and depth contrast consistency, are composed of the final depth similarity

measurement, which is defined as:

S, (1.7 ) =exp| - (5-9)

2
o

W, (rr )+ W (r,:;,r,/)J

where 7, (7,.%/) is the depth value consistency measurement to evaluate the inter
image depth consistency, due to the fact that the common regions should appear similar
depth values

W, (r.r)=|d, ~a]

. (5-10)
w,(r.7/) describes the depth contrast consistency, because the common regions should

represent more similar characteristic in depth contrast measurement.

W, (raor))=|D.(r2)-D.(r))

(5-11)

with
D ()= |d) -4 e o/ (5-12)
k#m
where D.(7) denotes the depth contrast of superpixel 7., p. represents the position
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of superpixel r,,and o’ isa constant.

Saliency similarity. Inspired by the prior that the common regions should appear
more similar in single saliency map compared to other regions, the output saliency map
from the addition scheme is used to define the saliency similarity measurement in this

work:

St (12)=55()) (5-13)

where S.,(7,) is the saliency score of superpixel 7 based on Eq. (5-7).

s, (ré,rj) = exp(—

Combination similarity. Based on these cues, the combination similarity

measurement is defined as the average of the three similarity measurements.

i i SL‘ (rrit’rni)_'_sd (rrit’rnj)_'_ss (’;;’rnj)
sw (raor)) = ; (5-14)

where s.(r5.7/), s,(7.7/), and s,(7.%/) are the normalized RGB, depth, and

saliency similarities between superpixel 7, and r/, respectively. A larger s, (rm,r,,f )

value corresponds to greater similarity between two superpixels.

2) Common probability

For co-saliency detection, it is necessary to discriminate whether the selected
salient objects are common or not. The common object means the object with repeated
occurrence in multiple images. Based on this definition, the common probability
function is used to evaluate the likelihood that a superpixel belongs to the common
regions, and it is defined as the sum of maximum matching probability among different
images. For each superpixel r,, only the most matching superpixel 7/ in image 7

is selected for calculation, which is denoted as:

i =arg max S, (ri.7) (5-15)

nellN;]
where 7/ is the most matching/similar superpixel in image 7/ for superpixel 7,
based on the maximum combination similarity score, and N, represents the number
of superpixles in image 7/.

Then, these selected superpixels from different images are used to calculate the

common probability:
if i 1 S i
F(n)=5m 2 Sulnn) (5-16)

where 7/ is the most matching superpixel in image 7’/ for superpixel 7, and N

denotes the number of images in an image group. Finally, the updated co-saliency map
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of deletion scheme is denoted as:

S (ra) =S4, (ra)- B () (5-17)
where S.,(7,) isthe saliency score of superpixel r produced by the addition scheme.
Fig. 5-3(d) shows the co-saliency map after addition and deletion schemes. Compared
with the initialized saliency map shown in Fig. 5-3(c), the co-salient object appears to

be more consistency and the backgrounds are effectively suppressed.
5.2.4 Iteration Scheme

In order to obtain more superior co-saliency map, an iterative scheme is designed
in the proposed framework, as shown in Fig. 5-1. The iterative scheme works as a
refinement model to combine the addition and deletion steps and refine the co-saliency
map in loop. In the iteration scheme, a heuristic termination strategy is set by checking
the maximum iteration number /., and the difference between two iterations.
Specifically, the second termination condition is introduced to check whether the
saliency result becomes stable or not, which is formulated as the average difference

between two iteration results.
. 1 . A
D] :(ﬁZIS;E,(t)—S;@,(t—l)IJSg (5-18)

where S.,(z) denotes the co-saliency map produced after the ¢” iteration
optimization, Il represents the number of pixels in the co-saliency map, and ¢ isa
given threshold to determine whether the iteration should be terminated or not, which
is setto 0.1 in all experiments. Until D; <¢, the iteration will be terminated and output
the final co-saliency map, otherwise, the iteration will continue. Some visual examples
of the iteration scheme are shown in Fig. 5-4. The third column shows the original co-
saliency result, and the first iteration and the final co-saliency maps are shown in the
last two columns of Fig. 5-4. From the figure, the initial co-saliency map is improved
obviously with the iteration processing. For example, the cartoon with blue hair (named
Sulley) is suppressed effectively since it is not a common object in the image group.
Similarly, the background regions around the red car are also suppressed through the

iteration scheme.
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Fig. 5-4 Some examples of the iteration scheme. (a) RGB image. (b) Ground truth. (¢) The initial
saliency map through the addition and deletion scheme. (d) The saliency map after the first iteration.
(e) The final saliency result.

5.3 Experimental Results and Discussion

In this section, the proposed framework is evaluated on two RGBD co-saliency
datasets with the qualitative and quantitative comparisons. In addition, the ablation
studies are conducted, which include the analysis of each module in the framework and

the discussion of one-for-one option co-saliency framework.

5.3.1 Experimental Settings

The proposed co-saliency framework is evaluated on two RGBD benchmarks, i.e.,
RGBD Cosegl83 dataset [88] and RGBD Cosal150 dataset [114]. Three quantitative
criteria are adopted to evaluate the co-saliency map, which include the Precision-Recall
(PR) curve, F-measure, and AUC score. In the proposed method, the number of
superpixels for each image is set to 200, the maximum iteration number is set to 5 for
balancing the computational complexity and performance. the propsoed method is
implemented in MATLAB 2014a on a Quad Core 3.5GHz workstation with 16GB

RAM, which costs average 42.67 seconds to process one image.
5.3.2 Comparison with State-of-the-art Methods

The proposed method is compared with 8 state-of-the-art methods, which include
RC [25], HS [26], BSCA [30], RRWR [31], DCLC [33], SCS [77], CCS [79], and
LRMF [81]. The first five single image saliency methods are regarded as the input of
the proposed framework, and the last three methods are the state-of-the-art co-saliency
methods.

For subjective evaluation, some visual examples on two datasets are shown in Figs.
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5-5 and 5-6, which consist of three image groups on RGBD Cosall50 dataset (i.e.,
cartoon named Mike, red car, and statue), as well as three groups on RGBD Cosegl83
dataset (i.e., white cap, computer, and red flashlight). From Fig. 5-5, the single image
saliency methods (e.g., RC, HS, and RRWR) fail to discover the co-salient objects
effectively and accurately. Taking the group Mike as an example, the common salient
object is the green cartoon with big eye. However, many non-common objects, such as
the cartoon with blue hair and the purple snake, are detected as the salient objects in the
single saliency models. In addition, some background regions are not effectively
suppressed, such as the trees in the statue group and non-salient cars in the red car group.
In a word, the single saliency detection methods fail to detect the common salient
objects in co-saliency scenarios. Therefore, it is essential that a co-saliency framework
should be designed to convert the single saliency map into co-saliency result. The co-
saliency map produced by our framework is shown in the last row of Fig. 5-5.
Compared with the single saliency maps, the common salient regions are highlighted
more consistent and accurate, and the backgrounds are suppressed effectively. To
comprehensive evaluate the proposed method, three state-of-the-art co-saliency
methods (i.e., SCS [77], CCS [79], and LRMF [81]) are introduced for comparison.
From the figures, the proposed approach can effectively highlight the common salient
regions from the image group, and robustly suppress the background regions even when
the salient regions exhibit large variations in shape and direction or the background is

very complex and interferential.

( Group Cartoon Named Mk Graunfed Gar Group Statun &,
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Fig. 5-5 Visual comparison of different saliency and co-saliency detection methods on the RGBD
Cosall50 dataset.
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In contrast, the RGBD Cosegl83 dataset is more difficult and challenging for co-
saliency detection, and some visual examples are shown in Fig. 5-6. As can be seen, the
proposed method achieves better performance compared with the other saliency and
co-saliency detection methods. For example, the non-common objects (e.g. the white
bowl and yellow cup) are effectively suppressed in the white cap group compared with
other methods. Moreover, in the computer group, the consistency and homogeneity of
the salient object is obviously improved compared with others. In the red flashlight
group, the red flashlight is highlighted by the proposed method more effective than
others. However, some backgrounds are still retained in the final result due to the small

size and complex scene.
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Fig. 5-6 Visual comparison of different saliency and co-saliency detection methods on the RGBD
Coseg183 dataset.
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The quantitative comparison results including the PR curves, F-measure, and AUC
scores are reported in Fig. 5-7. As can be seen, on the RGBD Cosall150 dataset, the
proposed method achieves the highest precisions of the whole PR curves, the largest F-
measure and AUC score compared with other methods. The same conclusion can be
drawn from the results on the RGBD Cosegl183 dataset. From the PR curves on both
two datasets, it can be seen that the final co-saliency result (i.e., the red line) reaches
the highest level in all curves, and the performance of co-saliency framework is
obviously superior to the five original single image saliency models. It also
demonstrates that the proposed co-saliency framework achieves the goal of converting

the single saliency results into co-saliency scenarios. The F-measure and AUC scores
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also support the conclusion. The proposed RGBD co-saliency detection framework
aims to design a many-for-one structure, i.e., multiple single saliency maps input and
one co-saliency map output, to synthesize the superiority of different single saliency
maps. In order to prove the effectiveness and versatility of the proposed algorithm,
another one-for-one option is also implemented and evaluated, and the relevant results

will be discussed in Section 5.3.5.
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Fig. 5-7 Quantitative comparisons between the proposed method and the state-of-the-art methods
on two datasets. Notice that “ours-iter0” means the co-saliency without iteration scheme, and “ours-
final” denotes the co-saliency result with iteration scheme. (a)-(c) PR curves, F-measure, and AUC
scores on the RGBD Cosal150 dataset. (d)-(f) PR curves, F-measure, and AUC scores on the RGBD
Cosegl83 dataset.
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5.3.3 Module Analysis

In this subsection, each module of the proposed framework including the
initialization, addition scheme, deletion scheme, and iteration scheme is
comprehensively evaluated on the RGBD Cosall50 dataset. The quantitative
comparisons are shown in Fig. 5-8, and the evaluation result of the iteration scheme is

represented in Fig. 5-9.
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Fig. 5-8 Quantitative comparisons of the each part of the proposed framework on RGBD Cosal150
dataset. (a) PR curves. (b) F-measure. (¢) AUC score.

In the initialization process, the original five saliency maps are integrated to
produce a baseline for co-saliency detection, and its PR curve is marked as carmine in
Fig. 5-8(a). Compared with the PR curves and F-measure of the original single saliency
results, it indicates that the initialization result achieves better performance and
produces a preferable baseline for later co-saliency detection. In the addition scheme,
depth shape prior is proposed to introduce the depth information into the framework,

and the label propagation is used to further optimize the saliency result. As shown in
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Fig. 5-8, the saliency map through the addition scheme (the black line in PR curves) is
improved significantly compared to the initialization result (the carmine line), and the
F-measure and AUC score also achieve higher scores. Then, the deletion scheme is
conducted to introduce the inter-image corresponding information into the framework
and produce the initial co-saliency map. All the quantitative measurements in Fig. 5-8
show that the initial co-saliency result without iteration scheme obtains the best
performance compared to other modules. In addition, an iteration scheme is designed
to further update the co-saliency map and achieve more consistent result. The PR curves
shown in Fig. 5-8(a) demonstrate that the performance is obviously improved using the
iteration scheme, in which the blue line denotes the initial co-saliency result and the red
line represents the final co-saliency result with iteration scheme. With the iteration
scheme, the performance of co-saliency detection is continually optimized according to
the F-measure and AUC score.

In order to verify the rationality of the iteration termination condition, an
experiment of ten iterations without termination conditions are conducted on the RGBD
Cosal150 dataset, and the detailed quantitative comparison results are shown in Fig. 5-
9. From the average precision curve, the performance of the algorithm with the iterative
progress tends to be stable gradually. In general, the termination conditions will not be
satisfied after the first iteration, and its improved level is most noticeable. Moreover,
most of the images will satisfy the termination condition after 3~4 iterations, that is, the
co-saliency map no longer appears obvious changes. Thus, it also demonstrates that the

maximum iteration number of 5 is reasonable in the experiments.
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Fig. 5-9 Average precision of each iteration on the RGBD Cosal150 dataset.
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5.3.4 Evaluation of Depth Shape Prior

In the framework, a novel depth descriptor, namely depth shape prior (DSP), is
proposed to introduce the depth information to assist the identification of the co-salient
objects. Introducing the depth shape prior into RGB saliency model, the 2D saliency
model will turn into a RGBD saliency model and achieve a better performance. In this
subsection, the performance of DSP is evaluated on NJU-400 dataset [123], and the
relevant results are shown in Fig. 5-10 and Table 5-1. Five different 2D saliency maps
produced by BSCA, RC, HS, RRWR, and DCLC methods are used as the original

saliency maps.
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Fig. 5-10 Quantitative evaluation of the DSP on NJU-400 dataset. The black line in each PR curve
denotes the original RGB saliency result, and the red line represents the saliency result with depth
shape prior. The PR curves for (a) HS, (b) RC, (c) DCLC, (d) RRWR, and (¢) BSCA methods.

In the PR curves shown in Fig. 5-10, the black line denotes the original RGB
saliency result, and the red line represents the saliency result with depth shape prior.
From the PR curves, it can be seen that the saliency result with DSP achieves the higher
precisions of the whole PR curves compared with the 2D saliency results, and the F-
measure also arrives at the consistent conclusion from Table 5-1. For the F-measure,

the maximum percentage gain achieves 3.65% for HS method, and the average

percentage gain achieves 2.38%.
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Table 5-1 F-measure of the DSP on the NJU-400 Dataset.

HS RC DCLC RRWR BSCA

without DSP 0.6661 0.6732 0.6914 0.7040 0.7022
with DSP 0.6904 0.6914 0.7094 0.7132 0.7136
percentage gain 3.65% 2.70% 2.60% 1.31% 1.62%

In order to further illustrate the effectiveness of DSP descriptor in the proposed
model, an experiment is conducted on the RGBD Cosal150 dataset, and the results are
reported in Table 5-2. From the table, the F-measure achieves the maximum percentage
gain of 4.10% for RC method, and the average percentage gain reaches 3.09%. These
experiments demonstrate that the depth information could improve the performances of
the co-saliency. In other words, DSP can be used as an independent descriptor that

converts the 2D saliency map into an RGBD saliency map.

Table 5-2 F-measure of the DSP on the RGBD Cosall50 Dataset.

HS RC DCLC RRWR BSCA

without DSP 0.7101 0.7163 0.7385 0.7106 0.7318
with DSP 0.7294 0.7457 0.7642 0.7294 0.7502
percentage gain 2.72% 4.10% 3.48% 2.65% 2.51%

5.3.5 Discussion

The proposed RGBD co-saliency detection framework is designed as a many-for-
one model, that is, multiple single 2D saliency maps input and one RGBD co-saliency
map output. In fact, the proposed framework can achieve one-for-one model. In other
words, if there is only one saliency map is embedded into the framework, it also can
output one RGBD co-saliency map. The experimental comparison is reported in Fig. 5-
11. The PR curves and F-measure demonstrate that the one-for-one option also achieves
the transformation from single image saliency map to RGBD co-saliency map, and
obtains better performance of co-saliency detection. In general, the better the saliency
map is, the better the co-saliency map achieves. This is, of course, the reason why the
multiple saliency maps are fused at first in the proposed framework. It can provide a
better baseline for later detection in order to achieve more accurate and stable co-
saliency result. However, as the results shown in Fig. 5-11, the proposed framework

acquires satisfying result when only one saliency map is embedded.
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Fig. 5-11 Quantitative evaluation of one-for-one option for the proposed framework on the RGBD
Cosal150 dataset. The black line in each PR curve denotes the original RGB saliency result, and the
blue line represents the final co-saliency result using the proposed framework. The PR curves with
different input saliency maps, i.e., (a) HS, (b) RC, (c) RRWR, (d) BSCA, and (e) DCLC. (f) F-
measure of the one-for-one framework.

5.4 Summary

In this chapter, an iterative RGBD co-saliency framework was proposed to convert
the existing 2D saliency model into RGBD co-saliency scenario. Three schemes were
integrated into the framework, including the addition scheme, deletion scheme, and
iteration scheme. The addition scheme aimed to optimize the single saliency map and
introduce the depth information into the framework using the depth shape prior
descriptor. The deletion scheme focused on capturing the inter-image constraints and
suppressing the non-common regions using a common probability function, which is
formulated as the likelihood of each superpixel belonging to the common regions. The
iterative scheme generated more homogeneous and consistent co-saliency map in a
cycle way. The comprehensive comparisons and discussions on two RGBD co-saliency
datasets have demonstrated that the proposed method outperforms other state-of-the-art

saliency and co-saliency models.
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Chapter 6 Hierarchical Sparsity Based Co-saliency
Detection for RGBD Images

In this chapter, a novel co-saliency detection method for RGBD images is
proposed based on hierarchical sparsity reconstruction and energy function refinement.
With the assistance of the intra saliency map, the inter-image correspondence is
formulated as a hierarchical sparsity reconstruction framework. The global sparsity
reconstruction model with a ranking scheme focuses on capturing the global
characteristics among the whole image group through a common foreground dictionary.
The pairwise sparsity reconstruction model aims to explore the corresponding
relationship between pairwise images through a set of pairwise dictionaries. In order to
improve the intra-image smoothness and inter-image consistency, an energy function
refinement model is proposed, which includes the unary data term, spatial smooth term,
and holistic consistency term. Experiments on two RGBD co-saliency detection
benchmarks demonstrate that the proposed method outperforms the state-of-the-art

algorithms both qualitatively and quantitatively.

6.1 Introduction

With the recent explosive growth of data volume, people need to process multiple
relevant images collaboratively. Co-saliency detection model needs to consider the
common attributes of salient objects in an image group through the inter-image
constraint. In other words, the co-salient objects should not only be prominent with
respect to the backgrounds in each individual image, but also should recur throughout
the whole image group [24]. In addition to the color appearance, human can perceive
the distance mapping of a scene, which is known as depth information. Moreover, depth
information has been proven to be useful for many computer vision tasks, such as
segmentation [3], image retargeting [7], enhancement [10], and saliency detection
[58,62,65]. However, most of the existing methods focus on handling the RGBD images
rather than the RGBD image group. In this work, the depth feature is not only served

71



Doctoral Dissertation of Tianjin University

as a constraint in the inter-image correspondence modeling, but also used as a color
information supplement in the refinement component.

Moreover, in addition to the saliency attribute in an individual image, the
repetitiveness constraint across the whole image group is also crucial to suppress the
background and non-common salient regions [24]. In the existing methods, the inter-
image correspondence is simulated as a similarity matching [71-78], a cluster process
[79], a rank constraint [80,81], a propagation process [82,83] or a learning process [84-
87]. However, the matching- and propagation-based methods are often time consuming,
while the clustering based methods are sensitive to the noise. To overcome these
problems, the sparsity-based technique is a good choice and has demonstrated the
potential to improve the performance of many tasks, including saliency detection. For
the sparsity-based saliency detection methods, the background or foreground dictionary
is used to reconstruct each processing unit, and the saliency is measured by the
reconstruction error. In addition to describing the saliency of an individual image,
sparsity representation can be used to constrain the inter-image correspondence
capturing and to achieve inter saliency detection. In this work, a hierarchical sparsity
reconstruction model is innovatively proposed to capture a more comprehensive inter-
image relationship by considering the global and local inter-image information. The
hierarchical sparsity property includes two complementary aspects:

(1) The co-salient objects in the whole image group should belong to the same
category and have similar appearance. Therefore, a global foreground dictionary with
a ranking scheme is built to reconstruct each image and to capture the global inter-
image correspondence, which is called global sparsity reconstruction.

(2) The relationship among multiple images can be decomposed into a
combination of multiple pairwise correspondences. Therefore, a set of foreground
dictionaries constructed by other images are utilized to reconstruct the current image
and obtain multiple pairwise inter saliency maps from the local perspective.

In addition, the co-salient objects in different images of the same group should be
similar and consistent in appearance. Thus, a superior co-saliency detection model
should guarantee the local smoothness in each individual image and global consistency
in the whole image group. In this chapter, an energy function refinement model is
proposed to attain a more consistent and accurate co-saliency result, which includes the

unary data term, spatial smooth term, and holistic consistency term. The data term
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constrains the updating degree of the refinement algorithm, and the smooth term favors
that all the spatially adjacent regions with similar appearance should be assigned to
consistent saliency scores. In addition to these two traditional terms, a holistic
consistency term is specifically designed for the co-saliency detection task, which
imposes the appearances of co-salient objects to be consistent in the whole image group.

In summary, an effective and efficient co-saliency detection method for RGBD
images is provided based on hierarchical sparsity reconstruction and energy function

refinement. The details will be introduced in the following sections.

6.2 Proposed Hierarchical Sparsity Model

The flowchart of the proposed hierarchical sparsity based co-saliency detection
method for RGBD images is shown in Fig. 6-1, which includes intra saliency
calculation, hierarchical inter saliency detection based on global and pairwise sparsity

reconstructions, and energy function refinement.

f:>

RGB image Depth map

Ei"h

Co-saliency

Fig. 6-1 Flowchart of the proposed RGBD co- sahency detection method.

According to the definition of co-saliency detection, the co-salient objects should

be prominent in an individual image. Thus, the intra saliency map is firstly calculated
for each individual image. The input RGB images in a group is denoted as {I "}l_N:] , and

the corresponding depth maps as {D"}il, where N is the number of images in the

group. For computational efficiency and structural representation, each RGB image I’
is abstracted into some superpixels R ={r.}"  through the SLIC algorithm [119],

where N, represents the number of superpixels in image /. In light of the
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effectiveness and robustness, the DCMC method proposed in the Chapter 3 is used as
the basic method for intra saliency detection, and the intra saliency value of superpixel
ri is denoted as S, (7).

The background of each image may be diverse within the same image group, while
the co-salient objects tend to have a similar appearance in all images. Therefore, the co-
salient regions can be reconstructed better than the background regions through a
sparsity framework with the foreground dictionary. In this work, the corresponding
relationship among multiple images is simulated as a hierarchical sparsity framework
considering the global and pairwise sparsity reconstructions. The global inter saliency
reconstruction model describes the inter-image correspondence from the perspective of
the whole image group via a common reconstruction dictionary, while the pairwise inter
saliency reconstruction model utilizes a set of foreground dictionaries produced by
other images to capture local inter-image information.

Finally, an energy function refinement model, including the unary data term,
spatial smooth term, and holistic consistency term, is proposed to improve the intra-
image smoothness and inter-image consistency and to generate the final co-saliency
map. The spatial smooth term is used to optimize the intra-image smoothness, and the
holistic consistency term is specifically designed for co-saliency detection task to
update the inter-image consistency. Hierarchical inter saliency detection based on
global and pairwise sparsity reconstructions, as well as the energy function refinement,

are detailed in the following sections.

6.2.1 Global Inter Saliency Reconstruction

The co-salient objects in a whole image group should belong to the same category
and have a similar appearance. Therefore, a global foreground dictionary is built to
reconstruct each image and capture the global inter-image correspondence. First, some
initial foreground seeds are selected based on all the intra saliency maps in the image
group. Then, a ranking filter is designed to eliminate the interference seeds and to
determine the optimal foreground seeds. Next, the feature vectors of foreground seeds
are extracted to construct the global foreground dictionary. Finally, the reconstruction

error produced by the sparsity framework is utilized to measure the global inter saliency.

1) Initial foreground seeds selection
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The intra saliency map provides effective single image saliency description.
Assuming that most of the co-salient objects can be included in these saliency maps,
the top K superpixels in image /' with larger intra saliency values are selected as
the foreground seeds. Then, all these seeds from different images are combined into an

=0, Ud; U...uD,)  where @, denotes the

initial foreground seed set @

init

foreground seed set of image ', and N is the number of images.

2) Ranking based seeds filtering

Since the intra saliency result is not completely accurate, some disturbances may
be wrongly included in the initial foreground seed set, such as the backgrounds and
non-common salient regions, which may degenerate the reconstruction accuracy.
Therefore, a ranking scheme is designed to filter the interferences and refine the
foreground seeds.

In general, the co-salient objects satisfy three constraints, i.e., (a) the category
should be same, (b) the color appearance should be similar, and (c¢) the depth
distribution should be approximate. Combining these three constraints, a novel measure
is designed to evaluate the local consistency of superpixels belonging to the initial
foreground seed set. First, all the initial seed superpixels are grouped into five clusters
by using the K-means++ clustering [127], and each superpixel is assigned to a
corresponding cluster center {c, }ZK , respectively. Then, introducing the clustering,

color, depth, and saliency constraints, the consistency measure is defined as follows:

ne(r)=| 3 (-l eb)w5.2) (61
and
*(h,,h )+ A_ -|d —d
Wnl” — exp(_ l ( m n ) -f_o-zmln m n J (6_2)

where .7, €®,,, 7, is the cluster center of superpixel #,, w,, represents the
feature similarity between superpixel 7, and superpixel 7,, S.(s,) is the intra
saliency value of superpixel 7,, N-K is the total number of initial foreground seeds,
I{, isthe ¢,-norm function,and o> isaparameter to control strength of the similarity,
which is set to 0.1 in all experiments. 4, denotes the color histogram of superpixel 7,

in the Lab color space, z°(-) represents the Chi-square distance, and d, is the mean
depth value of superpixel 7,. A,,=min(2,,4,) denotes the minimum depth confidence

measure of two input depth maps, where 4, is the depth confidence measure of the
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input depth map D™. A larger mc corresponds to higher consistency with respect to
other foreground seeds. In other words, the larger the consistency measure is, the higher
the probability of the superpixel being the foreground seed. Finally, the top 80% of

initial seeds with larger consistency measure values are reserved as the final foreground
seeds, which is denoted as @©,.

Some illustrations of the foreground seeds are shown in Fig. 6-2, where the third
row presents the visualization of the initial foreground seeds marked in red, and the
final foreground seeds marked in yellow after ranking scheme are shown in the last row.
As can be seen, some backgrounds (e.g., the lawns located by the blue arrows) in the
second and third images are wrongly selected as the foregrounds in the initial seeds set.
With the ranking scheme, the correct foreground seeds (i.e., the dark bird) are

successfully reserved, while the backgrounds are effectively eliminated.

-

Fig. 6-2 Some examples of ranking scheme for foreground seeds selection. The first second rows
are the RGB images and depth maps, the third row shows the initial foreground seeds marked in red,
and last row presents the final foreground seeds marked in yellow after ranking scheme.
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3) Sparsity-based global reconstruction

Four types of low-level features, including color components, depth attribute,
spatial location, and texture distribution, are utilized to describe each superpixel 7, as
fi= [l; d p. t,’;]r , where [ is the 9-dimensional color components in the RGB, Lab,
and HSV color spaces, 4 denotes the depth value, P corresponds to the 2-
dimensional spatial coordinates, and ¢ represents the 15-dimensional texton
histogram [131]. The feature representations of the stacking superpixels in the final
foreground seeds set ©,, are constructed as the global foreground dictionary, which
is denoted as Dg; .

Under the same reconstruction dictionary, the reconstruction error between
foreground and background regions should be different. Thus, the image saliency can
be measured by the reconstruction error [27]. The reconstruction error is computed by
the sparsity representation with a global foreground dictionary, and each superpixel 7,
is encoded by:

i

@, =argmin| £} - Do -a [+ | (6-3)
where ¢, is the optimal sparse coefficient for superpixel 7,, Dg- denotes the global
foreground dictionary, f isthe feature representation of superpixel 7., |, isthe ¢,
-norm function, and ¢ is set to 0.01 as suggested in [27].

The foreground dictionary is used to achieve global reconstruction, thus, the
superpixel with the smaller reconstruction error should be assigned to a greater saliency

value and vice versa. The global inter saliency of superpixel 7, is defined as:

/) (6-4)

where S, (r,L) is the inter saliency of superpixel 7, through the global reconstruction,

i*

S, (12 )=exp =, f" )=exp =] £~ Dy -,

¢, denotes the reconstruction error of superpixel 7,,and ¢* isa weighted constant.
6.2.2 Pairwise Inter Saliency Reconstruction

The global reconstruction aims to describe the inter-image correspondence from
the perspective of the whole image group. In fact, the relationship among multiple
images can be decomposed into a combination of multiple pairwise correspondences,
which benefits capturing the local inter-image information. In order to deeply explore

a more comprehensive inter-image corresponding relationship, a sparsity-based
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pairwise reconstruction method is proposed to calculate the pairwise inter saliency. First,
a foreground dictionary for each image is constructed based on the corresponding intra
saliency map, respectively. In this way, the N foreground dictionaries in an image
group are obtained, where N denotes the number of images in the group. Then, each
image is reconstructed by the N -1 foreground dictionaries derived from other images
in the group, respectively. Finally, these N-1 reconstructed results are fused to
generate the pairwise inter saliency map.

For each image 7*, the top K superpixels with larger intra saliency values are
selected as the foreground seeds. Similar to the sparsity-based global reconstruction, a
27-dimensional feature vector is used to represent each superpixel. Then, the feature
representations of the stacking foreground superpixels in each image are constructed as
the pairwise foreground dictionary, which is denoted as D}, . As mentioned earlier, the
foreground pairwise dictionaries generated by other images can be utilized to
reconstruct the current image and capture the local inter-image relationship. Using the
pairwise foreground dictionary N produced by the image 7, the image 7' can be

constructed and the saliency is measured as:
2
/) (6-5)

where S,ﬁ,.(r,ﬁ) is the inter saliency through the pairwise reconstruction using the

St (12 )=exp (=t /" )=exp|=| £ ~ D} o

ki ki*

dictionary D}, &' denotes the reconstruction error of superpixel 7,, a,” is the
optimal sparse coefficient of superpixel 7, ke€[L2,...,N], k=i represents the index
of pairwise foreground dictionary, and o* is a weighted parameter. Therefore, N -1
saliency maps for each image can be obtained through different pairwise dictionaries.

At last, all these maps are fused to generate the final pairwise inter saliency map by:

; 1 ok [
Sy (Vm)=ﬁ' 2 Sy () (6-6)
k#i

The global inter saliency map describes the global inter-image correspondence
from the whole image group, while the pairwise inter saliency map captures the local
relationship from the pairwise images. Finally, these two inter saliency maps are

combined as the hierarchical sparsity based inter saliency:

(1) =5(5, ()45, (12) (6-7)

where S, (r,f;) denotes the hierarchical sparsity based inter saliency of superpixel 7, .
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6.2.3 Energy Function Refinement

In order to achieve a superior and globally consistent saliency map, a refinement
model with an energy function is designed in our work. Three terms are included in the
energy function: the unary data term 7, constrains the similarity between the final
saliency map and initial saliency map; the spatial smooth term 7, favors that all the
similar and spatially adjacent superpixels in an individual image should be assigned to
consistent saliency scores; and the holistic consistency term 7, enforces that the
appearance of the salient objects should be consistent within the whole image group.

Therefore, the energy function is defined as:

E=T+T 4+, =35, ~5,) + 2w (5,75 ) +Xe, 5 (6-8)
m Q m

where 5, denotes the refined saliency value of superpixel r,, s,=5,(7,)-S,(r,) is
the initial saliency value of superpixel 7, by combining the intra and inter saliencies,
Q represents the spatially adjacent set in an individual image, w,, denotes the
similarity between two superpixels, which is defined in the same way as Eq. (6-2), and
g =;(2(hm,hg) is the color difference between the superpixel 7, and global
foreground model via the chi-square distance of Lab color histograms. The top 20
superpixels with larger initial saliency value in each image are regarded as the

foreground samples to represent the global foreground distribution.
=[]\ , where N:ZLN,. is the total number of

Let s=[s,].,, and &

superpixels in the whole image group. Then, the energy function is rewritten in the
matrix forms as:

E=(5-s) -(5-s)+5" (D-W)-5+5" -G-

“|

(6-9)
(m,n)EQ

NxN

where W:[wmn] is the spatial color similarity matrix, D =diag(d,.,d,, .dy)

. N . .
represents the degree matrix, dl-:Z‘,:],(,.J)EQW,j , and G =diag(g,.g,.....g;) is the

difference matrix between the superpixels and global foreground model.
The minimization of the above energy function can be solved by setting the

derivative with respect to s to be 0, which is represented as:
OE

— =2(5-5)+2(D-W)-5+2G:5 =0 (6-10)

79



Doctoral Dissertation of Tianjin University

Combining the like terms, the solution is given by:

s=[1+(D-W)+G] s (6-11)

where I is an identity matrix with the size of NxX,
6.3 Experimental Results

In this section, the proposed RGBD co-saliency detection method is evaluated on
the RGBD Cosall50 dataset and RGBD Cosegl83 dataset. The qualitative and
quantitative comparisons with some state-of-the-art methods are presented, and some

discussions and analyses are conducted.
6.3.1 Experimental Settings

In experiments, two public RGBD co-saliency detection datasets, i.e., RGBD
Cosall150 dataset [114] and RGBD Cosegl83 dataset [88], are used to evaluate the
effectiveness of the proposed method. For quantitative evaluation, three criteria
including the PR curve, F-measure, and MAE score are introduced. In this work, the
number of superpixels for each image is set to 400, and the number of initial foreground

seeds is set to 40.
6.3.2 Comparison with State-of-the-art Methods

The proposed HSCS method is compared with 17 state-of-the-art methods,
including DSR [27], BSCA [30], HDCT [32], DCLC [33], SMD [34], DCL [46], DSS
[49], R3Net [133], ACSD [65], DF [61], CTMF [62], PCFN [63], SCS [77], CCS [79],
LRMF [81], ICS [134], and MCLP [114], where DCL, DSS, R3Net, DF, CTMF, and
PCFN are the deep learning based methods. The visual comparisons are shown in Fig.
6-3, and the quantitative evaluations are reported in Fig. 6-4 and Table 6-1.

In Fig. 6-3, four image groups, including the green cartoon in the virtual scene,
sculpture in the outdoor scene, and the red and yellow flashlights in the indoor scene,
are illustrated for visual comparison. Due to the lack of a high-level feature description
and inter-image constraints, the unsupervised single image saliency detection methods
(e.g., DSR [27], HDCT [32]) only roughly highlight the salient regions , while the
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background regions cannot be suppressed effectively (such as the street in the green
cartoon group and the trees in the sculpture group). Benefitting from the strong learning
ability of deep learning, the DCL [46] method achieves better performance with more
consistent salient regions. However, there are still some wrongly detected backgrounds,
such as the white object in the second image of the last group. Combining the depth cue
and deep learning, the DF [61] method suppresses the background effectively, but it
ignores the completeness of salient objects, such as the third image in the green cartoon
group. For the RGB co-saliency detection methods (CCS [79] and SCS [77]), some
foregrounds (such as the third image in the green cartoon group) are wrongly
suppressed by the CCS method, and some backgrounds (such as the white board in the
red flashlight group) are also inaccurately highlighted by the SCS method. Compared
with the above methods, RGBD co-saliency detection methods (ICS [134] and MCLP
[114]) achieve relatively superior performance with tangible salient objects. However,
they still fail to suppress some common backgrounds, such as the ground in the
sculpture group and the white board in the red flashlight group. By contrast, benefitting
from the hierarchical reconstruction and global refinement, the proposed method can

consistently highlight the salient objects and effectively suppress the backgrounds.

RGB Depth GT HDCT DCL MCLP Ics HSCS
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Fig. 6-3 Some visual examples of different methods.
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Fig. 6-4 PR curves of different methods on two RGBD co-saliency detection datasets, where “*”
denotes the deep learning based methods. (a) PR curves on the RGBD Cosall50 dataset. (b) PR
curves on the RGBD Coseg183 dataset.

Table 6-1 Quantitative comparisons with different methods on two datasets, where “*” denotes the deep

learning based methods.

RGBD Cosal150 Dataset RGBD Cosegl83 Dataset
F-measure MAE F-measure MAE
DSR 0.6956 0.1867 0.5496 0.1092
BSCA 0.7318 0.1925 0.5678 0.1877
DCLC 0.7385 0.1728 0.5994 0.1097
HDCT 0.6753 0.2146 0.5447 0.1307
SMD 0.7494 0.1774 0.5760 0.1229
DCL* 0.8345 0.1056 0.5531 0.0967
DSS* 0.8540 0.0869 0.5972 0.0782
R3Net* 0.7812 0.1296 0.6190 0.0678
ACSD 0.7788 0.1806 0.4787 0.1940
DF* 0.6844 0.1945 0.4840 0.1077
CTMF* - - 0.5316 0.1259
PCFN* - - 0.6049 0.0782
CCS 0.6311 0.2138 0.5383 0.1210
SCS 0.6724 0.1966 0.5553 0.1616

LRMF 0.6995 0.1813 - -
ICS 0.7915 0.1790 0.6011 0.1544
MCLP 0.8403 0.1370 0.6365 0.0979
ours 0.8500 0.1030 0.6466 0.0787
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PR curves of different methods on two datasets are shown in Fig. 6-4. As can be
seen, the proposed HSCS method reaches a higher precision on the whole PR curves.
Moreover, the proposed method is even superior to some deep learning based methods
(e.g., DCL [46], R3Net [133], DF [61], CTMF [62], and PCFN [63]). The quantitative
measurements, including F-measure and MAE score, are reported in Table 6-1. From
the table, the proposed method achieves the competitive performance compared with
17 other state-of-the-art methods. On the RGBD Cosall50 dataset, the F-measure of
the proposed method reaches 0.8500, and the maximum percentage gain reaches 34.7%
compared with other methods. Especially, the proposed HSCS method also achieves
the percentage gain of 8.8% compared with the deep learning based method (e.g.,
R3Net [133]). On the RGBD Cosegl83 dataset, the proposed method achieves the best
performance in terms of F-measure, and the performance gains against others are more
remarkable. The maximum percentage gain of the proposed method also reaches 35.1%
in terms of F-measure. All these visual examples and quantitative measures demonstrate

the effectiveness of the proposed method.

6.3.3 Module Analysis

The key points of the proposed hierarchical sparsity-based co-saliency detection
method for RGBD images include a hierarchical sparsity based inter saliency model
and an energy function refinement model. For hierarchical sparsity based inter saliency
generation, the global and pairwise sparsity reconstructions are used to capture the
inter-image constraints from two aspects. Each module is comprehensively evaluated

on the RGBD Cosal150 dataset, and the F-measures are presented in Table 6-2.

Table 6-2 F-measure of the main modules on the RGBD Cosall50 dataset.

Modules F-measure
global reconstruction 0.8145
pairwise reconstruction 0.7628
hierarchical inter saliency 0.8198
energy function refinement 0.8500

The global inter saliency reconstruction captures the global corresponding

relationship throughout the whole image group and achieves the F-measure of 0.8145.
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As a supplement, the multiple images relationship is formulated as pairwise
correspondences by using the pairwise reconstruction model with a set of pairwise
dictionaries, and the F-measure reaches 0.7628. Combining these two aspects, the
hierarchical inter saliency structure can explore a more comprehensive inter-image
relationship, and reaches 0.8198 in terms of F-measure, which is superior to most of the
existing (co-)saliency detection methods (e.g., DSR [27], SMD [34], DF [61], SCS [77],
LRMF [81], and ICS [134]). Finally, the co-saliency detection with energy function
refinement achieves the best performance, and the percentage gain reaches 3.7%

compared with the inter saliency models.

6.3.4 Evaluation of Depth Cue and Ranking Scheme

In this work, the depth cue is not only served as a constraint in the inter-image
correspondence modeling, but also used as a supplement of color information in the
refinement component. In order to attain more robust and accurate foreground seeds for
global dictionary construction, a ranking scheme is designed to filter the interferences
and to obtain optimal foreground seeds. Some experiments are conducted on the RGBD
Cosal150 dataset to evaluate the influence of these two constraints, and the F-measures
are reported in Table 6-3.

Compared with the first and the third rows, introducing the depth cue into the
model, the performance is obviously improved with a percentage gain of 8.4%. Shown
in the second and third rows, the performance with the ranking scheme is better than
the model without the ranking scheme. In addition, some illustrations are shown in Fig.
6-2. As can be seen, with the ranking scheme, the correct foreground seeds are
successfully reserved, while the backgrounds (such as the lawn in the second and third
images) are effectively eliminated. All these data demonstrate the effectiveness of the
depth information and ranking scheme.

Table 6-3 Evaluation of depth and ranking scheme on the RGBD Cosal150 dataset,
where “w/0” means “‘without”, and “w/” corresponds to “with”.

F-measure
w/o depth and w/ ranking 0.7839
w/ depth and w/o ranking 0.8439
w/ depth and w/ ranking 0.8500
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6.3.5 Parameter Discussion

In this section, the influence of different numbers of initial foreground seeds and
superpixels is discussed, and the tendency chart of the F-measure is shown in Fig. 6-5.

From Fig. 6-5(a), selecting 20 initial foreground seeds for each image is not
enough to represent the common saliency attributes completely and degenerates the
inter reconstruction result. As the seed number increase, the performance improves and
reaches the optimum when K is set to 40. When K reaches 50, the performance of
the algorithm begins to drop. The main reason for the drop after 50 is that too many
seeds contain background regions and decrease the reconstruction accuracy. As
mentioned above, the performance is not highly sensitive to the parameter K, and itis
set to 40 in all experiments. In addition to the number of initial foreground seeds, the
influence of different numbers of superpixels is further discussed in the experiments.
From the curve shown in Fig. 6-5(b), when the number of superpixels is set to 400, the
result achieves the best performance. In fact, the performance in different numbers of
superpixels are similar, indicating that the proposed algorithm is insensitive to the

number of superpixels.

0.86 0.855
RGBD Cosal150 RGBD Cosal150
0.8494 0.85
0.85 0.8482
3 0.845 2 0.85
a @ 0.8436 0.8493
Q Q 0.849 -
Y- 0.84 w
0.83 0.845
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K Number of superpixel
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Fig. 6-5 F-measure of different parameters on the RGBD Cosal150 dataset. (a) The influence of
different number of initial foreground seeds. (b) The influence of different number of superpixels.

6.3.6 Running Time

The running time of the proposed method is compared with others on a Quad Core
3.7GHz workstation with 16GB RAM and implemented using MATLAB 2014a. The

average running time is listed in Table 6-4.
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Table 6-4 Comparisons of the average running time (seconds per image) on the RGBD Cosal150 dataset.

Method  DCLC SMD DF CCS SCS MCLP ICS HSCS

Time 1.96 7.49 12.95 2.65 2.94 41.03 42.67 8.29

In general, compared with the image saliency detection method, co-saliency
detection algorithm often requires more computation time, especially for the matching
based methods (such as MCLP [114], ICS [134]). For the three RGBD co-saliency
detection methods, under the same conditions, the MCLP method takes 41.03 seconds
for one image, the ICS method takes 42.67 seconds, and the proposed HSCS method
takes an average of 8.29 seconds to process one image. Since the commonly used
superpixel-level matching process is replaced by the hierarchical sparsity based
reconstruction to capture the inter-image correspondence, the computational efficiency

of the proposed algorithm is clearly improved.

6.4 Summary

In this chapter, a novel co-saliency detection method for RGBD images based on
hierarchical sparsity reconstruction and energy function refinement was proposed. The
major contribution lay in the hierarchical sparsity based inter saliency modeling, where
the global inter-image model with a ranking scheme is used to capture the global
characteristic among the whole image group through a common foreground dictionary,
and the pairwise inter-image model is devoted to exploring the local corresponding
relationship through a set of pairwise foreground dictionaries. In addition, an energy
function refinement model was proposed to further improve the intra-image smoothness
and inter-image consistency. The comprehensive comparisons and discussions on two
RGBD co-saliency detection datasets have demonstrated that the proposed method

outperforms other state-of-the-art methods both qualitatively and quantitatively.
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Chapter 7 Video Saliency Detection via Sparsity-based
Reconstruction and Propagation

Video saliency detection aims to continuously discover the motion-related salient
objects from the video sequences. Since it needs to consider the spatial and temporal
constraints jointly, video saliency detection is more challenging than image saliency
detection. In this chapter, a novel method is proposed to detect the salient objects in
video based on sparse reconstruction and propagation. With the assistance of novel
static and motion priors, a single-frame saliency model is firstly designed to represent
the spatial saliency in each individual frame via the sparsity-based reconstruction. Then,
through a progressive sparsity-based propagation, the sequential correspondence in the
temporal space is captured to produce the inter-frame saliency map. Finally, these two
maps are incorporated into a global optimization model to improve spatiotemporal
smoothness and global consistency of the salient object in the whole video. Experiments
on three large-scale video saliency datasets demonstrate that the proposed method

outperforms the state-of-the-art algorithms both qualitatively and quantitatively.

7.1 Introduction

In the past few decades, saliency detection for static image has gained much
attention and achieved encouraging performances on the public benchmarks. By
contrast, video saliency detection still remains as a relatively challenging and emerging
issue. Different from the image saliency detection, video saliency detection aims to
continuously locate the motion-related salient object from the video sequences by
considering both the spatial and temporal information jointly, where the spatial
information represents the intra-frame saliency in the individual frame, and the
temporal information provides the inter-frame constraints and motion cues. Moreover,
the salient objects in video are continuous in time axis and consistent among different
frames, and the motion information is essential to distinguish the salient object from a

complex scene.
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In video data, the moving objects often attract more attention than the static ones.
However, not all moving objects are salient targets and need to be further discriminated
by the surrounding regions and adjacent frames. Therefore, how to make full use of the
motion information to highlight the salient regions and suppress the backgrounds is
essential to video saliency detection. Some motion-based features, such as optical flow
contrast and optical flow gradient, have been utilized to separate the foreground regions
from the video directly. Nevertheless, these methods are fragile due to the noises and
moving backgrounds. In this work, the motion compactness and motion uniqueness are
introduced as the motion cues to improve the motion saliency measurement, where the
motion compactness describes the distribution of the optical flow, and the motion
uniqueness represents the appearance characteristics of the motion amplitude
information.

Exhibiting robustness to noise, sparsity-based techniques have been demonstrated
to yield discriminative representations that have potential to improve the performances
in a variety of inference tasks, such as object tracking, face recognition, and shape
estimation. In addition, several saliency detection methods [27,135,136] construct the
sparse models from the image and report satisfactory results against complex
backgrounds. In [135], a weighted sparse coding framework on different data inputs
was proposed to locate the salient objects. Recently, Yuan et al. [136] combined the
deep neural network (DNN) and dense and sparse labeling (DSL) framework for
saliency detection. By contrast, only a few studies [90, 91] employed the sparse
representations to achieve video saliency detection. However, these methods only use
sparse representations to capture the spatial information from individual frames, thus
do not generalize well on the temporal space. To address this, a progressive sparse
propagation framework with the forward-backward strategy is developed to model the
inter-frame correspondence and generate the inter-frame saliency map. For the forward
pass, the previous frame is utilized to build the forward dictionary and reconstruct the
current frame. On the contrary, the backward pass processes the video from the last
frame to the first frame, and the current frame is reconstructed by the backward
dictionary constructed by the latter frame. Through the bidirectional propagation
processes, the inter-frame relationship is exploited and the inter-frame saliency is
achieved.

Generally, spatiotemporal consistency should be considered in video saliency
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models to achieve more homogeneous result, i.e., the saliency value of the salient region
or background should not change drastically along the time axis. Moreover, in most of
the existing methods, the input video is processed frame by frame without considering
a global measure across the whole video sequence. In this way, the saliency result can
only guarantee the local consistency rather than the global consistency. Therefore, a
global optimization scheme based on energy function is proposed to obtain more
homogeneous and consistent saliency result, which includes the unary data term,

spatiotemporal smooth term, spatial incompatibility term, and global consistency term.

7.2 Proposed Sparsity Reconstruction and Propagation Model

Motivated by the inherent aspects of salient objects in video, three progressive
steps are proposed to achieve video saliency detection, i.e., single-frame saliency
reconstruction, inter-frame saliency propagation, and global optimization. The
flowchart is shown in Fig. 7-1. First, with the intuition that salient objects in the video
should be salient in each individual frame, a single-frame saliency model is designed to
capture the spatial saliency using the sparse reconstruction with the static and motion
saliency priors. Then, the inter-frame saliency propagation with forward-backward
strategy is utilized to model the sequential correspondence in the temporal space and
generate the inter-frame saliency map. Finally, a global optimization model is designed
to guarantee the global consistency of the salient object across the whole video and
achieve more homogeneous saliency result. Each of these steps will be explained in the

next subsections.
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Fig. 7-1 Flowchart of the proposed video saliency detection framework.
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7.2.1 Single-frame Saliency Reconstruction

For video saliency detection, the detected object should be salient with respect to
the background and underlying motion in each frame. To this end, a sparse
reconstruction model with two saliency priors is used to detect the salient object in each
individual frame. The first one is the static saliency prior, which utilizes three color
saliency cues to construct a color-based reconstruction dictionary (DC). The second one
is the motion-based saliency prior, which integrates the motion uniqueness cue and
motion compactness cue to build a motion-based dictionary (DM).

Given a video sequence F= {F ’}INZ] including N frames, some homogeneous
superpixels R' = {rk’}:il are firstly derived by using the SLIC algorithm [119] for each
frame F',where N’ isthe number of superpixels. In addition, the large displacement
optical flow [137] is calculated to represent the pixel-level motion vector. The motion
vector v, of superpixel 7 1is defined as the mean value of pixel-level motion vector

in the superpixel.

1) Static-based saliency prior

The static-based saliency prior measures the static saliency in each frame by
incorporating the background dictionary into a sparse representation framework. Three
color-based cues, including background cue, compactness cue, and uniqueness cue, are
integrated to select the background seeds and build the dictionary for reconstruction.

Background Cue. It is generally accepted that in video production, the important
objects are close to the image center rather than the boundaries, which is a natural
response of the cameraman operating the imaging system. Thus, the superpixels located
at the image boundaries are more likely to be the background seeds, and this observation
has been applied to many saliency detection models [27,29]. In this work, the
superpixels along the image boundaries are selected as the background candidate set
@, that represents the spatial location attribute of the background regions.

Static Compactness Cue. The salient regions incline to have a small spatial
variance, whereas the backgrounds usually have a high spatial variance since their
superpixels are often distributed over the entire image. Therefore, the compactness cue

is introduced to describe the spatial distribution of the background regions. Following

the DCLC method [33], the spatial variance of superpixel 7 is calculated by:
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()= " Nn, -[||p1’ t‘/‘i I, -1
RN
where a, = eXp(—"’C; ~Icj|, /o 2) denotes the color similarity between two superpixels,
Ic, is the mean Lab color value of superpixel 7, 7 represents the number of pixels
that belong to the superpixel 7', p; denotes the spatial coordinates of superpixel 7',
u; is the spatial mean, |, isthe ¢,-norm function, and o> isa parameter to control
degree of the similarity, which is set to 0.1. Then, the top O, superpixels with larger
spatial variances are selected as the compactness-based background candidate set @..
Static Uniqueness Cue. The third cue represents the global appearance of the
background regions in which the salient object shows different properties in appearance
compared with the background. In this work, a cluster-based method is proposed to
define the uniqueness cue. First, K-means++ clustering [127] is used to group the
K

superpixels into K clusters {C; },:]

t

with the cluster centers {Ci }I; , where the cluster

number is set to 20 in the experiments. Then, two clusters with the largest Euclidean

distance are selected by:
{C’ C;} = argmax E, (c:n,c;)~ei‘vs(q")7v’y(q')‘ (7-2)

P’ m,nE{I‘Z,---,K}
where E,(c,.c,) is the Euclidean distance between the two cluster centers, and

v.(Cl,) denotes the mean spatial variance of the cluster C,,. The selected two clusters

correspond to one foreground cluster and one background cluster. Finally, a decision
scheme considering the spatial variance and background probability is designed to

determine the uniqueness-based background candidate set @5, as:

el [v(c)>v(c)]r[r(c)>r(c)]

oy, ={{c;h i [v(c)=v(c) (B (c)<R(c)] (7-3)

& , ortherwise

where Pb(C;) is the mean background probability of the cluster C, by using the
method in [29].

Static-based Saliency Reconstruction. The final background set is obtained by
combining all background candidates as @, = @, D VD, . Then, three types of
features considering the color components, spatial location, and texture distribution are
used to describe each superpixel. The color features in different color spaces are the

intuitive  representation  of the superpixel, which is denoted as

¢=[R,G,B,L,a,b,H,S,V]. The position coordinates benefit for depicting the spatial
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relationship of the superpixel, which is represented as P =[x,y]. The texton histogram
¢t describes the local texture information of the superpixel [131]. All these hand-crafted
features are firstly normalized to [0,1], and then concatenated into a feature vector to
represent the superpixel 7 , which is denoted as x; =[c;, p,i,t,iJT. The background
dictionary Dj is constructed by the feature representations of the stacking background
seeds in .

Based on the assumption that reconstruction error should be different for

foreground and background through a sparse reconstruction model, the image saliency

can be measured by the reconstruction error [27]. Each superpixel 7 is encoded by:
* : t t || t
o, =arg min "x,c -D} o "2 + A "ak ”1 (7-4)

where o, is the optimal sparse coefficient for superpixel 7, D} denotes the
background dictionary for frame F’, x; isthe feature representation of superpixel 7,

A is setto 0.01 as suggested in [27], ||| and |, indicatethe / -normand ¢,-norm

functions, respectively.

For the sparse reconstruction with a background dictionary, the salient region will
have a large reconstruction error, while the reconstruction error of the background
region should be small. Thus, the saliency of superpixel 7, can be measured by the
reconstruction error &, :

2
t\_ ot N ) P
Ss(rk)_gk_"xk D oy 5

(7-5)

where S, (r) denotes the static saliency value of superpixel 7 via the reconstruction

error ¢, .

2) Motion-based saliency prior

Moving target attracts more attention in visual perception, thus, a motion-based
saliency prior is introduced to represent the salient object from the perspective of
motion space. An example of the optical flow data is shown in Fig. 7-2, where the
spatial distribution of moving object is more concentrated than the background regions
in the optical flow data. In addition, the moving object is often different from the
background regions in terms of the magnitude of optical flow (MOF), which is
consistent with the uniqueness cue in the color space. Based on these observations, the
color-related cues is extended to the motion field and determine the background seeds
for dictionary construction.

Motion Compactness Cue. The intuition is that, in the whole video sequences,
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the spatial location distribution of moving object is more concentrated and compact in
the optical flow field, whereas the background is distributed over the entire image.
Therefore, a “motion compactness” cue is introduced to describe the distribution of the
optical flow data and determine the background candidates. Similar to the color-based

spatial variance, the motion-based spatial variance is defined as:
NY
I=1 mltd ' n; :

t e
Vi (rk ) - N

=1

‘pz’ —u,
: (7-6)

my - n;

where m, =exP(—||v; —-vi||,/ 62) is the motion similarity between two superpixels, v,
denotes the optical flow vector of superpixel 7, 1 represents the number of pixels
that belong to superpixel 7', pj =[x.y ] is the centroid coordinates of superpixel 7,

and o’ is a constant parameter. u, =[ux!,uy!] represents the spatial mean in the

optical flow field, which is defined as:

N ot
r_ Zl:lmkl X
luxk - N
m, -n
o My - 1y
N I (7-7)
¢ LM
W = :
PN
M 1y

where a larger v, (rk’ ) indicates that the distribution of superpixel 7 in optical flow

field is more dispersed, the background probability of the superpixel is greater. Then,
the top O, superpixels with larger motion-based spatial variance are composed to the

background candidate set @, .

(b)

Fig. 7-2 Optical flow data of different video frames. (a) RGB image. (b) Optical flow map. (c) The
MOF data.
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Motion Uniqueness Cue. In general, the moving target exhibits different motion
appearance compared with the background regions in the MOF data. Therefore, a
“motion uniqueness” cue in the MOF field is defined by calculating the global contrast

of each superpixel:
Ey(pi.pil)

M, () =M, (1) e 7 (7-8)

N

u, (rk’):

where u,(r) is the motion-based uniqueness measure of superpixel 7, M, ()

’
k=lk=l

denotes the MOF value of the superpixel 7, and E,(-) is the Euclidean distance
function between two superpixels, which emphasizes the effect of closer superpixels.
The smaller the uniqueness value is, the greater background probability of the
superpixel achieves. Thus, top O, superpixels with smaller motion-based uniqueness
value are selected to build the background candidate set @i, .

Motion-based Saliency Reconstruction. The final motion-related background set
is determined by combining two background candidate sets, as @, = @}, VP, . For
the motion-based sparse reconstruction, the motion feature is necessarily introduced to
represent the motion cue. Furthermore, in order to guarantee the robustness of the
feature representation, the basic color components are also embedded into the feature
pool. Each superpixel is represented as a 12-dimensional feature vector x| =[c/,m; ],
where ¢ isthe 9-dimensional color feature, and m denotes the 3-dimensional motion
feature involving the components and magnitude of optical flow data. Then, the feature
representation of each motion-related background seed is used to construct the

background dictionary for frame F* as Dj. At last, as same as the static-based

saliency reconstruction in Egs. (7-4)~(7-5), the motion saliency of each superpixel is

represented by the reconstruction error, which is denoted as S, (/) .

3) Single-frame saliency map

The static saliency and motion saliency aim to discover the salient object from
different feature domains. These two saliency maps are integrated to produce the single-

frame saliency map as:
S (rk’)zSS(rk’)Sm (rk') (7-9)

7.2.2 Inter-frame Saliency Propagation

The sequential relationship across the time axis is crucial to video saliency
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detection. The salient object in an individual frame should be further discriminated by
using the inter-frame information. Considering the high consistency and smoothness of
the salient object in appearances and views between two adjacent frames, the previous
frame can be employed to build a foreground dictionary and reconstruct the current
frame in a forward way. Likewise, the current frame can be reconstructed by the next
frame in a backward propagation manner. Therefore, a spatiotemporal saliency model
is established via sparse propagation with a forward-backward strategy to smooth the
salient object and suppress the background.

For the inter-frame sparsity-based saliency propagation, the directly adjacent
frames are most relevant to the current frame, which benefits for capturing the common
attributes of the salient objects. The proposed forward-backward propagation strategy
is a heuristic method for inter-frame relationship abstraction in a progressive manner.
The forward saliency and backward saliency are progressively correlated, where the
forward saliency result is embedded into the feature pool to construct the dictionary and
conduct the backward propagation. Through the bidirectional propagation processes,

the exploitation of inter-frame relationship becomes more comprehensive and accurate.

1) Forward propagation

In the forward propagation, the current frame is reconstructed by a foreground
dictionary derived from the previous frame, and the video is sequentially processed
from the first frame to the last frame.

First, top O, superpixels with larger single-frame saliency values in frame F*'
are selected as the foreground seeds in the forward pass. Then, using the spatiotemporal
features, cach superpixel is represented as x| =|ci.pj.#,m,S, (1 )JT , where ¢
represents the 9-dimensional color feature, 2 is the 2-dimensional spatial coordinates,
t is the 15-dimensional texton histogram, m denotes the 3-dimensional motion
feature vector, and S, is the single-frame saliency value. The feature representations
of all foreground seeds from frame F' are stacked to construct the forward
foreground dictionary for frame £, which is denoted as D).

Each superpixel in the current frame F* is reconstructed by the forward
foreground dictionary D} through the sparse framework, and the reconstruction error

g is calculated to measure the forward saliency of superpixel 7 . Since the foreground

dictionary is used for sparse reconstruction, the reconstruction error of the foreground
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regions should be small, and the background regions have a large reconstruction error.
In other words, the superpixel with smaller reconstruction error should be assigned to
a greater saliency value, and vice versa. Therefore, following [135], the forward
saliency of superpixel 7 is measured by an exponential function of reconstruction
error:
S, (1) =exp (-7 /o) = exp~|x; -0y @ [ [ (7-10)

where S,(7) is the saliency value in the forward pass, @ denotes the optimal sparse
coefficient obtained by solving Eq. (7-4) with the forward foreground dictionary D},

and o*>=0.1 represents a weighted parameter.

2) Backward propagation

The forward propagation captures the pre-order inter-frame relationship. Similarly,
a backward pass is further carried out, which processes the video from the last frame to
the first frame in a post-order way. The backward pass is the same as the forward pass,
except for the foreground dictionary construction.

In the backward propagation, the single-frame saliency and forward saliency are
combined to determine the foreground seeds. First, top ©,/2 superpixels with larger
saliency values in the single-frame and forward saliency models are selected,

respectively. Then, the union of these superpixels are determined as the final foreground

seeds in the backward pass. Different from the forward pass, the forward saliency S,

is added into the feature pool, which is denoted as x; =[c,i, p,ﬂ,t,ﬁ,m,ﬁ,S,,(r,j),Sf (rk’ )T
Finally, the backward reconstruction error & is used to define the backward saliency:
5, (1) =exp(-3. /o) =exp | -2 [ /o) @-11)

where @, denotes the optimal sparse coefficient obtained by solving Eq. (7-4) with

the backward foreground dictionary D.".

7.2.3 Global Optimization

In order to achieve superior and globally consistent saliency map, an efficient
optimization model with an energy function that consists of four complementary terms
is proposed.

Unary Data Term. This term encourages the similarity between the final saliency

map and initial saliency map, which is defined as:
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£ =35 ] (7-12)

where ' represents the final optimized saliency value of superpixel 7 , and
sp =8, (n)+S, (r)+5S,(r) is the initial saliency value by combining three obtained
saliency maps.

Spatiotemporal Smooth Term. This term favors that all the similar and
spatiotemporally adjacent superpixels across the whole video should be assigned to
consistent saliency scores, which is calculated by:

E= Y o(d-9) (7-13)
(k1)eQy
where o, is the Lab color similarity between superpixels r and 7 , and
Q,=0Q,uQ, isthe spatiotemporal adjacent set. €2, is the spatially adjacent set in one
frame:

Q =i(r',r )| 7 andr' arespatially adjacentin F' -
{(r7) V1 and r; arespatially adj . (7-14)

s

Following the settings in [95], the temporally adjacent set €, is represented as:
Q, ={(r.n)]

where p, is the spatial coordinates of superpixel 7,,and ¢ denotes the frame index.

P, - P <800 & -] =1} (7-15)

Spatial Incompatibility Term. Inspired by the related work [138], the
distributions of the salient and background regions should have high probabilities at
mutually exclusive domains. Thus, the spatial incompatibility term enforces that the
same region should not have high foreground and background probabilities

simultaneously, which is represented as:

E= 2 o s8] (7-16)
When a highly probable salient region is surrounded by unlikely background neighbors,
the spatial incompatibility energy is reduced. Therefore, for a low spatial
incompatibility energy, the foreground and the background should form their own
dominant regions.

Global Consistency Term. The salient objects in video should be salient with
distinct motion patterns in each individual frame, and appear in most of the frames.
Therefore, the salient objects should be consistently highlighted throughout the whole
video sequences. However, most of the existing methods process the video frame by
frame and ignore the global property across the whole video sequence. In this way, the

saliency result only guarantees the local consistency rather than global consistency. In
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this work, the global consistency term is proposed to constrain the consistency from the
global perspective, which imposes the appearance of salient object approximate to a

global video foreground model and is described as:

E, =K, -5 (7-17)
where x, = z*(k.h,) is the chi-square distance of Lab color histograms between the
superpixel and video foreground model. The top 10 superpixels with larger initial
saliency value in each frame are extracted as the foreground samples to represent the
foreground distribution of the whole video.

To sum up, the energy function is defined as follows:
E=n-E +mn,-E +n,-E +n,-E, (7-18)

where 7, is the weighting parameter for balancing the relative influence of different
components. Following [95], the weighting parameter 7 for unary data term is set to
0.5 to constrain the updating change not to be large, and other weighting parameters are
set to 1 with equal contribution.

Let s=[s],. , and ;=[SAJ where N,=>" N' is the total number of

Nyxt 2
superpixels in the whole video. The energy function can be rewritten as the following
matrix form:
~ T ~ AT A AT A AT ~
E =7, -(s—s) -(s—s)+772 s (D, =W, )-s+n:s W, -s+15,-s ‘K-s (7-19)

k.1)eQ, . . I .
where W, =[a)k1}() is the spatiotemporal color similarity matrix,

NyxN 4

. . N, (k.1)e,
D, = dmg(d,,dz,---,dNA) denotes the degree matrix, ;= > oigiyea, @i s W, =|:a)kl:|NA><N4

is the spatial color similarity matrix, and K =diag(x;.x,,-x,,) is the difference

matrix between the superpixels and global foreground model.

Combining these four quadratic function terms, the energy function is a convex

function, which can be solved by setting its derivative with respect to s to be 0. The
transformation formula is represented as:

h -(§—S)+772 '(Dst _Wsz)'§+773'ws'§+774'K'§=0 (7-20)

Then, the solution is obtained by:
S=[m T+ -(D, =W, )+, W, +7, K] -(,-5) (7-21)

where I is an identity matrix with the size of N, xN,.
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7.3 Experimental Results

7.3.1 Experimental Settings

The proposed approach is evaluated on the SegTrackV1 dataset [115], DAVIS
dataset [117], and ViSal dataset [95]. For quantitative evaluation, three criteria
including the PR curve, F-measure, and MAE score are used. In experiments, the
number of superpixels for each frame is set to 500, and the number of seeds are set to
(0,0,) =(250,50) . The proposed method is implemented by MATLAB 2014a on a Quad
Core 3.7GHz workstation with 16GB RAM. The proposed method takes an average of
17.03 seconds to process one frame with a resolution of 854x480, in which the optical
flow calculation costs 65% of the runtime, the single-frame saliency calculation takes
10% of the runtime, the inter-frame saliency costs 22% of the runtime, and the global
optimization occupies 3% of runtime. In the future, a faster optical flow method with

parallel technique can be used to reduce this cost further.

7.3.2 Comparison with State-of-the-art Methods

The proposed method is compared with 15 state-of-the-art methods, including 6
static image saliency methods for each frame (i.e., HS [26], DSR [27], BSCA [30],
RRWR [31], HDCT [32], and DCLC [33]), 2 co-saliency detection methods for each
video (i.e., CCS [79] and SCS [77]), and 7 video saliency detection methods (i.e., SP
[94], CVS [95], RWRV [96], SG [97], SGSP [101], STBP [99], and VFCN [105]),
where VFCN is a deep learning based video saliency detection method. All the
compared methods are implemented by the source codes or released results provided
by the authors. The qualitative comparison of different methods on three datasets are
illustrated in Fig. 7-3, and the quantitative evaluation results are reported in Fig. 7-4
and Table 7-1.

Visual results of different methods are shown in Fig. 7-3. For the image saliency
model (e.g., DSR and RRWR), it is difficult to extract the salient object completely and
accurately from a complex scene due to the lack of motion perception and inter-frame
constraint. For example, in the Flamingo video, two birds are both detected as the
salient objects by the DSR and RRWR methods. In fact, only the front one is the unique
salient object in the whole video. In other words, it is insufficient to directly use the
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static saliency model to detect the salient object in video. In the Dog video, the salient
object and the background have the similar color appearance, which leads to some
backgrounds are wrongly detected as foregrounds by RRWR method. In the Lucia video,
the bench is relatively static compared to the moving human, and should not be detected
as the salient object in the video. However, the image saliency models fail to effectively
suppress these regions without considering the motion constraints. In the Parachute
video, some backgrounds are wrongly highlighted by the image saliency models due to
the strong luminance. For the co-saliency detection model, benefiting from the
introduction of inter-image correspondence, some backgrounds are -effectively
suppressed, such as the trees and lawns in the Lucia video. However, some foregrounds
are missed through the CCS model, such as the salient objects in the Parachute video.
Moreover, for the co-saliency model, it is difficult to distinguish motion related salient
object from all foreground objects, such as the Flamingo video. Without introducing

the motion cue, the back of the bird is wrongly retained by CCS method.
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By contrast, the video saliency detection methods produce better results. The
proposed method achieves the best and most consistent performance compared with
other methods. The salient objects are accurately and completely detected from some
challenging videos, such as Flamingo video. Note that, other video saliency detection

models either cannot exactly locate the salient object (e.g., RWRV) or cannot effectively
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suppress the background regions (e.g., SG and SGSP). For example, in the Dog video,
the salient object is not accurately and completely detected by the RWRV and STBP
methods. In addition, some video saliency models fail to discover the salient object
accurately from the clustered backgrounds, such as the SG and STBP models in the
Flamingo video. The SGSP method induces many false positives in the background
regions, and cannot locate the front bird perfectly. In the Lucia video, compared with
other video saliency methods, superior performance in shape preserving and
pinpointing is achieved through the proposed method.

1r

DAVIS Dataset Visal Dataset

.'—x"-

SegTrackV1l Dataset

Precision

0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0.2 04 0.6 0.8 1
Recall Recall Recall

(a) (b) (©)

Fig. 7-4 PR curves of different methods on three datasets. (a) SegTrackV1 dataset. (b) DAVIS
dataset. (c) ViSal dataset.

The PR curves are shown in Fig. 7-4. As visible, the proposed method achieves
the highest precision of the whole PR curves on these three datasets with remarkable
performance gain. In particular, on the DAVIS dataset, the proposed SRP method
achieves better performance than the deep learning based video saliency method (i.e.,
VFCN). The F-measure and MAE scores are reported in Table 7-1. From the table, it
can be seen that the proposed method obtains the highest F-measure on these three
datasets and the minimum MAE score on the ViSal dataset. The proposed method
achieves the second and third places in term of MAE score on the DAVIS and
SegTrackV1 datasets, respectively. In addition, the performance gains of the proposed
method against others are more remarkable. Compared with the second best method in
terms of F-measure, the percentage gain of the proposed method reaches 3.75% on the
SegTrackV1 dataset, 2.19% on the DAVIS dataset, and 6.67% on the ViSal dataset.
Moreover, the proposed unsupervised method is superior to the deep learning based
VFCN method, and the percentage gain of F-measure achieves 2.19% on the DAVIS
dataset. All the quantitative measures demonstrate the effectiveness of the proposed

method.
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Table 7-1 Quantitative comparisons with different methods on three datasets.

SegTrackV1 Dataset DAVIS Dataset ViSal Dataset

F-measure MAE F-measure MAE F-measure MAE
DCLC 0.2755 0.1496 0.4783 0.1350 0.6700 0.1265
DSR 0.4445 0.1305 0.4972 0.1303 0.6923 0.1061
RRWR 0.3267 0.1963 0.5089 0.1693 0.6707 0.1690
HS 0.3821 0.3142 0.4523 0.2505 0.6442 0.2019
BSCA 0.3579 0.2366 0.4680 0.1957 0.6949 0.1703
HDCT 0.4681 0.1268 0.5664 0.1346 0.7047 0.1282
CCS 0.1486 0.1437 0.3476 0.1510 0.5317 0.1427
SCS 0.1137 0.2664 0.2307 0.2567 0.4384 0.2523
SP 0.2159 0.1195 0.4616 0.1430 0.5723 0.1510
CVS 0.5370 0.1085 0.6212 0.1004 0.6676 0.1139
RWRV 0.4458 0.1511 0.3776 0.2001 0.4662 0.1903
SG 0.6218 0.0810 0.5553 0.1034 0.6640 0.1129
SGSP 0.6275 0.1258 0.6911 0.1374 0.6226 0.1772
STBP 0.6583 0.0342 0.5848 0.1015 0.6815 0.0987

VFCN - - 0.7488 0.0588 - -
ours 0.6830 0.0949 0.7652 0.0688 0.7517 0.0924

7.3.3 Module Analysis

Each main component (i.e., single-frame saliency reconstruction integrating the
static saliency and motion saliency, inter-frame saliency with forward and backward
propagations, and global optimization) is comprehensively evaluate on the DAVIS
dataset, and the quantitative comparison results are presented in Fig. 7-5 and Table 7-2.
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Fig. 7-5 PR curves of different modules of the proposed method on the DAVIS dataset.
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Compared with the static saliency result, the motion saliency model achieves the
higher precision of the P-R curves, and the F-measure is increased by 19.42%, which
shows the effectiveness of the motion information in video saliency detection. Through
the multiplying combination, the F-measure and MAE score of the single-frame
saliency model reach 0.7358 and 0.0807, which is better than the other existing video
saliency models. To fully capture the inter-frame relationship, the sparsity-based
propagation with forward-backward strategy is proposed. As can be seen, the
performance is further improved through the saliency propagation model, and the F-
measure reaches 0.7381 after the backward propagation. Considering the
spatiotemporal smoothness and global consistency, an optimization model is designed
to improve the saliency map, and the output is regarded as the final video saliency result.
From Fig. 7-5, the optimized result achieves the highest precision of the PR curves,
which is marked by the red line. The same conclusion can be drawn from the F-measure
reported in Table 7-2, which demonstrates the rationality and effectiveness of the
optimization model. On the whole, the performance is gradually improved through the

different modules in the proposed method.

Table 7-2 F-measures of different modules on the DAVIS dataset. SR: single-frame saliency
reconstruction that integrates the static and motion saliencies. SP: inter-frame saliency propagation.

Modules F-measure MAE

Static Saliency 0.5029 0.1206

SR Motion Saliency 0.6971 0.0807
Single Saliency 0.7358 0.0712

Forward Propagation 0.7318 0.0924

> Backward Propagation 0.7381 0.0793
Global Optimization 0.7652 0.0688

7.3.4 Parameter Discussion

The influence of different seed numbers is comprehensively discussed, the
tendency chart of F-measure on the DAVIS dataset is shown in Fig. 7-6. Generally, the
salient regions in each frame are much smaller than the background regions. To explore
the single-frame saliency, some background seeds are selected, and the number is
denoted as ©,. More background seeds can be chosen to construct a more complete

background dictionary. For the inter-frame saliency propagation, the foreground seeds
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are determined to propagate the sequential relationship across the time axis in a
forward-backward way. The number of foreground seeds is denoted as ©.. In order to
avoid the introduction of interference, the number of foreground seeds should not be
too large. In all the experiments, the ratio of O to O, is fixed as 5:1. Selecting 100
or 120 background seeds for each frame is too small to completely reconstruct the
single-frame saliency and will degenerate the performance. As the seed number
increases, the performance becomes better, and the performance reaches optimum when
(0,0,) is set to (250,50). Subsequently, the performance begins to drop. The main
reason is that too many seeds will introduce some false seed regions and decrease the
reconstruction and propagation accuracy. As above, the performance is not highly

sensitive to the parameter (9,,0Q,), and it is set to (250,50) in all experiments.
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Fig. 7-6 F-measure of different (Q,.0,) on the DAVIS dataset.

7.4 Summary

This chapter proposed a sparsity-based video saliency detection algorithm, which
integrates a saliency reconstruction model, a saliency propagation model, and a global
optimization model. Saliency reconstruction and propagation models leveraged on the
novel motion priors to discover the salient objects. In addition, their sparse
representations not only allowed them to extract the salient object from individual
frames efficiently, but also captured the inter-frame correspondence along the time axis
in a progressive way. Moreover, the performance was further improved by the global
optimization model. The comprehensive analysis have demonstrated that the proposed

method outperforms the state-of-the-art models.
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Chapter 8 Conclusion and Future Work

8.1 Conclusion

In this thesis, the comprehensive information including the depth cue, inter-image
correspondence, and spatiotemporal constraint are explicitly explored, the
corresponding RGBD saliency model, co-saliency model, and video saliency model are
innovatively designed, and the superior performances on large-scale benchmark
datasets are achieved.

First, deep exploiting the depth information, a novel saliency detection method for
stereoscopic images is presented based on depth confidence analysis and multiple cues
fusion. Considering the influence of different qualities of depth map, a depth confidence
measure is designed based on the depth distribution, which aims to reduce the negative
effect of poor depth map on saliency detection. In addition, the compactness prior in
color space is extended to depth domain, and a stereoscopic compactness saliency
model is proposed by integrating color and depth information. In order to improve the
robustness of the model, the foreground saliency based on multiple cues contrast with
depth-refined foreground seeds selection scheme is combined with the compactness
saliency to generate the final result.

Then, three co-saliency detection models for RGBD images are further
investigated.

(1) The first model to address the co-saliency detection for RGBD images is
proposed based on multi-constraint feature matching and cross label propagation. In
this work, the depth information is worked as a useful complement of color feature, the
similarity matching at the superpixel and image levels is designed to capture the inter-
image corresponding relationship, and the Cross Label Propagation (CLP) scheme is
proposed to optimize the intra and inter saliencies in a cross way and generate the final
co-saliency map.

(2) Utilizing the existing single saliency result as the initialization, an iterative

RGBD co-saliency detection framework is designed in a refinement-cycle manner. In
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this work, a novel depth descriptor, named depth shape prior (DSP), is proposed to
exploit the shape attributes from the depth map and enhance the identification of co-
salient objects from RGBD images. In addition, the inter-image correspondence is
modeled as a superpixel-level common probability function among multiple images in
the deletion scheme, and the iterative updating strategy is introduced to improve the
homogeneity and consistency in a cycle way. The proposed framework can effectively
exploit any existing 2D saliency model to work well in RGBD co-saliency scenarios.

(3) In order to achieve a win-win situation of the accuracy and efficiency, a co-
saliency detection method for RGBD images is presented based on hierarchical sparsity
reconstruction and energy function refinement. In this work, the hierarchical sparsity
framework is used to capture the corresponding relationship among multiple images,
where the global foreground dictionary is built to reconstruct each image and capture
the global inter-image correspondence, and a set of foreground dictionaries constructed
by other images are utilized to reconstruct the current image and obtain multiple
pairwise inter saliency maps from the local perspective. In addition, an energy function
refinement model, including the unary data term, spatial smooth term, and holistic
consistency term, is designed to improve the intra-image smoothness and inter-image
consistency. Compared with the first two RGBD co-saliency models, sparsity
representation is firstly used to capture the inter-image correspondence, which improve
the performance and guarantee the efficiency. Moreover, the co-saliency detection
optimization is first formulated as a global energy function optimization problem,
which considers the holistic consistency among different images in the group.

Third, taking the spatial prior, motion cue, and temporal constraint into account, a
video saliency detection model based on sparse reconstruction and propagation is
proposed. The sparsity-based saliency reconstruction model is utilized to generate
single-frame saliency map by making the best use of the static and motion priors. Then,
an efficient sparsity-based saliency propagation model is used to capture the
correspondence among different frames and produce the inter-frame saliency map,
where the salient object is sequentially reconstructed by the forward and backward
dictionaries. Finally, in order to attain the global and temporal consistency of the salient
object in the whole video, a global optimization model is presented, which integrates
unary data term, spatiotemporal smooth term, spatial incompatibility term, and global

consistency term.
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The extensive comparisons and comprehensive discussions on the corresponding
benchmark datasets are conducted, which demonstrate that the proposed algorithms

perform favorably against state-of-the-art methods both qualitatively and quantitatively.

8.2 Challenges

In the last decades, a plenty of saliency detection methods have been proposed to
obtain the remarkable progresses and performance improvements. However, there still
exist many issues that are not well resolved and needed to be further investigated.

For RGBD saliency detection, how to capture the accurate and effective depth
representation to assist in saliency detection is a challenge. Taking the depth
information as an additional feature to supplement color feature is an intuitive and
explicit way, but it ignores the potential attributes in the depth map, such as shape and
contour. By contrast, depth measure based method aims at exploiting these implicit
information to refine the saliency result. For example, the depth shape can be used to
highlight the salient object and suppress the background, and the depth boundary can
be utilized to refine the object boundary and obtain sharper saliency result. In addition,
the whole object usually has high consistency in the depth map. Therefore, the depth
information can be used to improve the consistency and smoothness of the acquired
saliency map. Generally, depth measure based methods can achieve a better
performance. However, how to effectively exploit the depth information to enhance the
identification of salient object has not yet reached a consensus. On the whole,
combining the explicit and implicit depth information to obtain a more comprehensive
depth representation is a meaningful attempt for RGBD saliency detection.

For co-saliency detection, how to explore inter-image correspondence among
multiple images to constrain the common properties of salient object is a challenge.
Inter-image corresponding relationship plays an essential role in determining the
common object from all the salient objects, which can be formulated as a clustering
process, a matching process, a propagation process, or a learning process. However,
these methods may either be noise-sensitive or time-consuming. The accuracy of
corresponding relationship is directly related to the performance of the algorithm. Thus,
capturing the accurate inter-image correspondence is an urgent problem to be addressed.

At present, there have been some attempts to detect co-salient object using deep
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learning network. However, these methods often simply cascade the features produced
from the single image and re-learn, rather than designing a specific inter-image network
to learn the effective inter-image correspondence.

For video saliency detection, how to combine more information and
constraints, such as motion cue, inter-frame correspondence, and spatiotemporal
consistency, is a challenge. Motion cue plays more important role in discovering the
salient object from the clustered and complex scene. The inter-frame correspondence
represents the relationship among different frames, which is used to capture the
common attribute of salient objects from the whole video. The spatiotemporal
consistency constrains the smoothness and homogeneity of salient objects from the
spatiotemporal domain. The main contributions of the existing methods are often
concentrated in these three aspects. In addition, the video saliency detection algorithm
based on deep learning is still immature, and only a few methods have been proposed,
which is a relatively underexplored area. However, it is a challenging task to learn the
comprehensive features including intra-frame, inter-frame, and motion through a deep

network under the limited training samples.

8.3 Future Work

In the future, some research directions and emphases of saliency detection can be
focused on:

(1) New attempts in learning based saliency detection methods, such as small
samples training, weakly supervised learning, and cross-domain learning. Limited
by the labelled training data, more work, such as designing a special network, can be
explored in the future to achieve high-precision detection with small training samples.
In addition, weakly supervised salient object detection method is a good choice to
address the insufficient pixel-level saliency annotations. Furthermore, the cross-domain
learning is another direction that needs to be addressed for learning based RGBD
saliency detection method.

(2) Extending the saliency detection task in different data sources, such as
light filed image, RGBD video, and remote sensing image. In the light filed image,
the focusness prior, multi-view information, and depth cue should be considered jointly.

For the RGBD video, the depth constraint should be introduced to assist in the
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spatiotemporal saliency. In the remote sensing image, due to the high angle shot
photographed, some small targets and shadows are included. Thus, how to suppress the
interference effectively and highlight the salient object accurately should be further

investigated in the future.
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