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习近平总书记在二十大报告中指出——
（四）促进区域协调发展。发展海洋经济，
保护海洋生态环境，加快建设海洋强国。

中华人民共和国中央人民政府
《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》

积极拓展海洋经济发展空间。聚焦新一代信息技术、生物技术、新能源、新材料、高端装备、新能源
汽车、绿色环保以及航空航天、海洋装备等战略性新兴产业，加快关键核心技术创新应用，增强要素
保障能力，培育壮大产业发展新动能。深化军民科技协同创新，加强海洋、空天、网络空间、生物、
新能源、人工智能、量子科技等领域军民统筹发展，推动军地科研设施资源共享，推进军地科研成果
双向转化应用和重点产业发展。

智慧海洋工程是全面提升经略海洋能力的整体解决方案。
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Underwater Image Enhancement

Underwater Image 
Enhancement Method

Inputs: 
Underwater images

Outputs: 
Enhanced Underwater images

Underwater image enhancement methods improve the visibility of
underwater images, eliminate color deviation and stretch contrast, and
effectively improve the visual quality of images.
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Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou, 
Sam Kwong, and Dacheng Tao

IEEE Transactions on Image Processing, 2020

An Underwater Image Enhancement 
Benchmark Dataset and Beyond 

https://li-chongyi.github.io/proj_benchmark.html

Highly Cited PaperHot Paper

Top 50 Popular Documents in IEEE TIP
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p Despite the prolific work, both the comprehensive study and insightful

analysis of underwater image enhancement algorithms remain largely due

to the lack of a publicly available real-world underwater image dataset.

p Lacking sufficient and effective training data, the performance of deep

learning-based underwater image enhancement algorithms does not

match the success of recent deep learning-based high-level and low-level

vision problems.

An Underwater Image Enhancement Benchmark Dataset and Beyond
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1. We construct a large-scale real-world underwater image enhancement
benchmark (i.e., UIEB) which contains 950 real underwater images. Moreover, the
corresponding reference images for 890 images are provided according to well-
designed pairwise comparisons.

2. With the constructed UIEB, we conduct a comprehensive study of the state-of-
the-art single underwater image enhancement algorithms ranging from
qualitative to quantitative evaluations.

3. We propose a CNN model (i.e., Water-Net) trained by the UIEB for underwater
image enhancement, which demonstrates the generalization of the constructed
UIEB and the advantages of our Water-Net, and also motivates the development
of deep learning-based underwater image enhancement.

Contributions
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l Underwater images with their corresponding reference images

UIEB Dataset
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ü How to generate the corresponding reference images?

u It is practically impossible to simultaneously photograph a real underwater scene and the 
corresponding ground truth image for different water types. 



l Data Collection

UIEB Dataset
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There are three objectives for underwater image collection

p A diversity of underwater scenes, different characteristics of quality degradation,

and a broad range of image content should be covered.

p The amount of underwater images should be large.

p The corresponding high-quality reference images should be provided so that pairs

of images enable fair image quality evaluation and end-to-end learning.



UIEB Dataset
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.

u These underwater images are
collected from Google, YouTube,
related papers, and our self-
captured videos.

u We mainly retain the underwater
images which meet the first
objective.

u After data refinement, most of the
collected images are weeded out,
and 950 candidate images are
remaining.

l Data Collection



l Reference Image Generation

UIEB Dataset
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u With the candidate underwater images, the potential reference images are generated by 12
image enhancement methods, including 9 underwater image enhancement methods, 2 image
dehazing methods, 1 commercial application for enhancing underwater images (i.e., dive+ ).

u With raw underwater images and the enhanced results, we invite 50 evaluator to perform
pairwise comparisons among the 12 enhanced results of each raw underwater image under
the same monitor.

u The reference image for a raw underwater image is first selected by majority voting after
pairwise comparisons.

u After that, if the selected reference image has greater than half the number of votes labeled
dissatisfaction, its corresponding raw underwater image is treated as a challenging image and
the reference image is discarded.

u We totally achieve 890 available reference images which have higher quality than any
individual methods and a challenging set including 60 underwater images.



UIEB Dataset
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l Reference Image Generation



UIEB Dataset

20

l Reference Image Generation



Water-Net
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u The purpose of the proposed Water-Net as a baseline is to call for the
development of deep learning-based underwater image enhancement, and
demonstrate the generalization of the UIEB for training CNNs.

u Gated-fusion network: Water-Net

ü In general, the fusion-based method achieves decent results, which benefits from the
inputs derived by multiple pre-processing operations and a fusion strategy. In the
proposed Water-Net, we also employ such a manner.

ü Based on the characteristics of underwater image degradation, we generate three
inputs by respectively applying White Balance (WB), Histogram Equalization (HE), and
Gamma Correction (GC) algorithms to an underwater image.



Water-Net
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Performance
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Conclusion and Future Work
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p As analyzed in qualitative and quantitative evaluations, there is no method
which always wins in terms of full- and no-reference metrics. In addition,
effective non-reference underwater image quality evaluation metrics are highly
desirable.

p The existing algorithms follow inaccurate image formation models or
assumptions, which inherently limit the performance of underwater image
enhancement.

p Note that the use of inaccurate imaging models is a major problem which keeps
the field of underwater computer vision at standstill.

It’s time for learning-based solutions!



Conclusion and Future Work
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p Extending the constructed dataset towards more challenging underwater images and
underwater videos.

p Trying to design a range map estimation network. With the estimated range maps, we
will make full use of such key prior information to further improve the performance of
underwater image enhancement network.

p Re-organizing the selection of the reference images from more reliable results and
also further train the volunteers on what the degrading effects of attenuation and
backscatter are, and what it looks like when either is improperly corrected.

p Providing multiple reference images for an underwater image and defining the image
quality level of their reference images when we re-organize the selection of the
reference images.
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Traditional method

Some of these methods directly
apply existing image enhancement
methods to underwater image data,
and there are also specialized
algorithms designed for
the characteristics of underwater
images.

Non physical model method

Mathematical modeling of the
degradation process of underwater
images, parameter estimation
based on the model, and then
inversion to obtain clear
underwater images.

Physical models-based method
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Traditional method

where 𝐼 is the observed underwater image, 𝐽 denotes the restored image, 𝐴 
represents the background light, and 𝑡 is the transmission map, describing 
the portion of the light that is not scattered and reaches the camera.

𝐼 𝑥 = 𝐽 𝑥 𝑡 𝑥 + 𝐴(1 − 𝑡(𝑥))

Object

Particles

Distance

Natural Illumination

Direct Component

Forward Scattering

Forward Scattering

Backward Scattering
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Motivation

Ø Traditional methods based on non-physical models largely rely on handmade feature
design, which makes them prone to over or under enhancement, thereby affecting the
overall visual effect. Although modeling the underwater imaging process is beneficial for
solving the unique visual problems of underwater images, relying solely on physical models
is not reliable because it is difficult to simulate a universal model to cope with complex
underwater environments.

Ø The deep learning method utilizes the powerful learning ability of deep networks and can
achieve good results in certain situations. However, underwater environments are often
complex and diverse, and relying solely on network learning may distort the enhanced
results.

Therefore, we hope to design a network architecture that can effectively combine
them to play to complementary advantages and collaborative promotion.

31



Contributions
Ø Considering the respective advantages of the physical model and the GAN model for

the UIE task, we propose a Physical Model-Guided framework using GAN with Dual-
Discriminators (PUGAN), consisting of a Phy-G and a Dual-D. Extensive experiments on
three benchmark datasets demonstrate that our PUGAN outperforms state-of-the-art
methods in both qualitative and quantitative metrics.

Ø We design two subnetworks in the Phy-G, including the Par-subnet and the TSIE-
subnet, for the parameter estimation of physical model and the physical model guided
CNN-based enhancement, respectively. On the one hand, we introduce an intermediate
variable in the Par-subnet, i.e., depth, to enable effective estimation of the
transmission map. On the other hand, we propose a DQ module in TSIE-subnet to
quantify the distortion degrees and achieve targeted encoder feature reinforcing.

Ø In addition to the pixel-level global similarly loss and perceptual loss, we design the
style-content adversarial loss in the Dual-D to constrain the style and content of the
enhanced underwater image to be realistic.

32



Our Method
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Par-subnet

The physical model of the underwater imaging process：

𝑡 is the transmission map, describing the portion of the 
light that is not scattered and reaches the camera, 𝛽 is the 
attenuation coefficient of the water, and 𝑑 is the depth of 
scene. Therefore, the depth can also reflect the 
attenuation of the scene to a certain extent.

obtaining color-corrected 
underwater images through 
physical model inversion 
during the first stage

We can inversely derive the calculation formula of 
the enhanced image 𝐽 as:

correct the color remove the influence of 
background light
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TSIE-subnet
In the first stage, we invert color-enhanced underwater images with better interpretability using the learned physical model
parameters. But as mentioned before, the enhancement effect is not perfect due to the exclusion of background light.

Therefore, we re-enhance the underwater images under the CNN network architecture in the second stage guided by the
color-enhanced images, thereby forming a two-stream architecture to realize the interaction of multi-source information.

35



TSIE-subnet

Combining these two aspects, the final weights can be defined as follows：

Subsequently, these weights are applied to the input features 𝑒!  to generate the 
updated features �̂�! through the residual connection: 

On the one hand, we can locate severely degraded regions by directly comparing 
the difference between the color enhanced image features and the original image 
features, which can be described as:

On the other hand, the degree of degradation of underwater images is negatively 
correlated with the transmission characteristics. Therefore, we can also identify 
some regions that are prone to degradation from the transmission map: 
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Loss Function

For Phy-G:
In order to make the generated image as visually 
pleasing as possible while maintaining its authenticity 
of the image, we use global similarly loss, perceptual 
loss and adversarial loss to compose the final loss:

For Par-subnet：
We first train the attenuation coefficient estimator 
and then freeze their parameters to train the depth 
estimator and transmission estimator. To control the 
accuracy of the transmission map, we use the 
transmission map and attenuation coefficient to 
compute the depth map again. Therefore, the loss of 
Par-subnet is defined as follows: 
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Experiments
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Experiments
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Experiments
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Experiments
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Ablation Study
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Conclusion

• In this paper, we propose a physical model-guided GAN model for
underwater image enhancement.

• In the phy-G, we fully combine the physical model and the CNN-based model,
where the Par-subnet generates the color enhanced underwater image by
physical inversion, and the TSIE-subnet equipped with a DQ module aims to
generate the final enhanced image through the regional and differential
feature learning.

• In addition, we design a novel Dual-D structure to judge the reconstruction
results of the generator, following a style-content synergy mechanism.

• Our extensive experiments on different benchmarks demonstrate the
superiority of this method and the effectiveness of each module. 44
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Introduction

Ø Since instance segmentation is
valuable in estimating object
interactions and inferring scene
geometry, it is of great use in many
underwater vision scenarios such as
underwater robot vision and
underwater vehicle autopilot.

Ø However, the segmentation of image
instances for general underwater
scenes has not been thoroughly
explored. The results of directly
applying natural image segmentation
models to underwater images with
generally degraded quality are often
unsatisfactory!
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Motivation

Ø On the one hand, there is no general underwater image instance
segmentation dataset to promote training and evaluation of instance
segmentation models. On the other hand, quality degradation of underwater
images is inevitable due to wavelength and distance-related attenuation and
scattering. Low-quality images often lead to the failure of current
segmentation methods.

Ø To alleviate this issue, we propose the first underwater image instance
segmentation (UIIS) dataset, aiming to promote the development of instance
segmentation for underwater tasks.

Ø Simultaneously, we propose WaterMask for multi-object underwater image
instance segmentation according to the intrinsic characteristics of
underwater imagery.
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Contributions

a) We construct the first general underwater image instance segmentation (UIIS)
dataset containing 4,628 images for 7 categories with pixel-level
annotations for underwater instance segmentation task.

b) We propose the first underwater instance segmentation model WaterMask,
as far as we know. In WaterMask, we devise DSGAT and MFRM modules to
reconstruct and refine the image features with underwater imaging
degradation, and Boundary Mask Strategy with boundary learning loss to
optimize the boundaries of underwater clustered instances.

c) Extensive experiments on popular evaluation criteria demonstrate the
effectiveness of the proposed UIIS dataset and WaterMask.
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Our UIIS Dataset
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Dataset Statistic and Challenges
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Ø Challenge in the number of instance.
We counted the number of instances in the dataset and the scenes with more than 5 instances accounted for
38.5% of the total and more than 10 instances accounted for 14.2%, in which the image with the most instances
had 162 instances.

Ø Challenges in small or large instances.
UIIS dataset have 3319 instances less than 14×14 pixels, accounting for 11.7% of the total, in addition to 6485
instances of size larger than 128x128 pixels, accounting for 22.8% of the total.

Ø Challenges in various image resolutions and image scenarios.
Contains images of various resolutions to match handheld camera shots or industrial equipment shots.
Contains images with significantly degraded quality, high saturation or high contrast images to evaluate the
performance of the network in different ocean scenarios.



WaterMask
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Difference Similarity Graph Attention Module

Although underwater images generally suffer from quality
degradation, underwater instances are mostly clustered, which
makes it possible for underwater images to have similar visual
information in multiple places, retaining different degraded details
under different water and lighting conditions. Therefore, we
propose DSGAT for collecting this similar visual information by
computing the attention between image patches so that each
patch can be complemented by the visual information of multiple
other similar patches, and reconstructing the image details by
extracting and combining information through GAT operations.
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Multi-level Feature Refinement Module

MFRM sends the features extracted
from the feature pyramid by 14×14
RoIAlign operation to two 3×3
convolutional layers to generate the
initial instance feature F1. After that,
we utilize the fine-grained features
generated by DSGAT to iteratively refine
the initial F1 by MFRM.

The MFRM will be executed twice,
outputting features F2 and F3, which
will be used as foreground and
boundary predictions, respectively.

We then design the Multi-level Feature Refinement Module (MFRM), which infers different resolution
masks by supplementing the degradation information so that higher resolution features can be utilized
to fully predict the boundaries.
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Boundary Mask Strategy

Boundary Learning Loss

We feed the features F2 and F3 into the 1×1 convolution layer to generate instance masks M2 and M3 with different
resolutions. The pixels in F2 have a large receptive field and contain rich high-level information, which is beneficial for
predicting the approximate location of the instance mask, but because of the low feature resolution, the boundaries
of the prediction results tend to be rough. Conversely, F3, while the high-resolution mask reduces the boundary error,
also causes the network to overpredict other pixels of the mask. Therefore, we use M2 and M3 to splice our output
together, with 𝐵"× = 𝑓"×(𝐵(𝑀")) and 𝑅"× = 𝑓"×(𝐵(𝑀") ∨ 𝐵(G")) in the following equation.

The boundaries of underwater instances are
often blurred, and the pixels used for training
boundary classification are much smaller than
those used for mask classification, leading to the
fact that the commonly used BCE loss is not
effective in helping the network to learn
information from the boundary. We design the
Boundary Learning Loss (BLL) to assign more
weights to the boundary regions, thus forcing
the network to pay more attention to the
classification within the boundary pixels and
thus make more accurate predictions.

Calculated Output:

Loss Function:
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Experiments

Table 2: Comparison with Mask R-CNN and Cascade Mask R-CNN on UIIS dataset. Models with ‡ were trained with 
3× schedule using multi-scale training.
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Experiments

Table 3: Comparison with the State-of-the-art Methods on UIIS. Models with ‡ were trained with 3× schedule using 
multi-scale training. The data marked in red are the best, and those in blue are the second best.
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Experiments

Figure 1: Qualitative comparison on the UIIS dataset. The first row represents the original image, and the second, third 
and fourth rows represent the results of Mask R-CNN, QueryInst and ours, respectively.
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Ablation Study

Table 4: Effectiveness of each component in WaterMask. 
ResNet-101-FPN and 1× training schedule is adopted.

Table 5: Different value of k. k is the number of farthest 
nodes to be connected.

Table 6: Different Size of Patch. Each graph node corresponds to a 4s × 4s patch, where s is downsampling
stride. When s = 2, the memory required by the model has exceeded the upper limit of the device.
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Conclusion and Future Work

Ø In this paper, we have constructed the first general underwater image instance
segmentation dataset with pixel-level annotations, which enables us to
comprehensively explore the underwater instance segmentation task.

Ø According to the intrinsic characteristics of underwater imagery, we have proposed
WaterMask for underwater instance segmentation. Extensive experiments have
demonstrated the effectiveness of the proposed UIIS dataset and WaterMask.

Ø In future work, we plan to extend the UIIS datasets to broader and more challenging
underwater images and underwater videos.

60



Future work

Perception：
New attempts in learning based

methods, such as small samples

training, un-supervised learning.

1
Evaluation：
Explore more reasonable, reliable

and interpretable evaluation

methods and measures.

2

Application：
Huge space to conduct research on visual
computing applications, such as segmentation,
detection, tracking, etc.

3

[TIP’16] [TIP’20] [TIP’21][TIP’23] [SPIC’21] [TCSVT’22]

[ICCV’23]
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