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Underwater Image Enhancement

Underwater Image
Enhancement Method

Inputs: Outputs:
Underwater images Enhanced Underwater images

Underwater image enhancement methods improve the visibility of
underwater images, eliminate color deviation and stretch contrast, and
effectively improve the visual quality of images.
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0, Hot Paper Highly Cited Paper

Top 50 Popular Documents in IEEE TIP

An Underwater Image Enhancement
Benchmark Dataset and Beyond

Chongyi Li, Chunle Guo, Wenqi Ren, Runmin Cong, Junhui Hou,
Sam Kwong, and Dacheng Tao

IEEE Transactions on Image Processing, 2020

https://li-chongyi.github.io/proj benchmark.html
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https://li-chongyi.github.io/proj_benchmark.html

Motivation

O Despite the prolific work, both the comprehensive study and insightful
analysis of underwater image enhancement algorithms remain largely due

to the lack of a publicly available real-world underwater image dataset.

O Lacking sufficient and effective training data, the performance of deep

learning-based underwater image enhancement algorithms does not
match the success of recent deep learning-based high-level and low-level

vision problems.

13



Contributions

1. We construct a large-scale real-world underwater image enhancement
benchmark (i.e., UIEB) which contains 950 real underwater images. Moreover, the
corresponding reference images for 890 images are provided according to well-
designed pairwise comparisons.

2. With the constructed UIEB, we conduct a comprehensive study of the state-of-
the-art single underwater image enhancement algorithms ranging from
gualitative to quantitative evaluations.

3. We propose a CNN model (i.e., Water-Net) trained by the UIEB for underwater
image enhancement, which demonstrates the generalization of the constructed
UIEB and the advantages of our Water-Net, and also motivates the development
of deep learning-based underwater image enhancement.

14



UIEB Dataset

e Underwater images with their corresponding reference images

v How to generate the corresponding reference images?

¢ ltis practically impossible to simultaneously photograph a real underwater scene and the
corresponding ground truth image for different water types.

15



UIEB Dataset

e Data Collection

There are three objectives for underwater image collection

o A diversity of underwater scenes, different characteristics of quality degradation,

and a broad range of image content should be covered.
o The amount of underwater images should be large.

o The corresponding high-quality reference images should be provided so that pairs

of images enable fair image quality evaluation and end-to-end learning.

16



UIEB Dataset

e Data Collection
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These underwater images are
collected from Google, YouTube,
related papers, and our self-
captured videos.

We mainly retain the underwater
images which meet the first
objective.

After data refinement, most of the
collected images are weeded out,
and 950 candidate images are
remaining.
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UIEB Dataset

e Reference Image Generation

*

With the candidate underwater images, the potential reference images are generated by 12
image enhancement methods, including 9 underwater image enhancement methods, 2 image
dehazing methods, 1 commercial application for enhancing underwater images (i.e., dive+ ).

With raw underwater images and the enhanced results, we invite 50 evaluator to perform
pairwise comparisons among the 12 enhanced results of each raw underwater image under
the same monitor.

The reference image for a raw underwater image is first selected by majority voting after
pairwise comparisons.

After that, if the selected reference image has greater than half the number of votes labeled
dissatisfaction, its corresponding raw underwater image is treated as a challenging image and
the reference image is discarded.

We totally achieve 890 available reference images which have higher quality than any
individual methods and a challenging set including 60 underwater images.

18



UIEB Dataset

e Reference Image Generation

UDCP

“
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UIEB Dataset

e Reference Image Generation

Method Percentage (%)
fusion-based [ 1] 24.72
two-step-based [ ] 7.30
retinex-based [ 7] 0.22
DCP [5] 2.58
UDCP [*7] 0.00
regression-based [ Y] 1.80
GDCP [10] 0.34
Red Channel [1] 0.90
histogram prior [45] 1337
blurriness-based [16] 3.48
MSCNN [66] 0.90
dive+ 43.93

20



Water-Net

o The purpose of the proposed Water-Net as a baseline is to call for the
development of deep learning-based underwater image enhancement, and
demonstrate the generalization of the UIEB for training CNNs.

¢ Gated-fusion network: Water-Net

v In general, the fusion-based method achieves decent results, which benefits from the
inputs derived by multiple pre-processing operations and a fusion strategy. In the
proposed Water-Net, we also employ such a manner.

v Based on the characteristics of underwater image degradation, we generate three
inputs by respectively applying White Balance (WB), Histogram Equalization (HE), and
Gamma Correction (GC) algorithms to an underwater image.



Water-Net
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Performance

raws

fusion-based

retinex-based

histogram prior  blurriness-based GDCP

Water CycleGAN

Dense GAN

FULL-REFERENCE IMAGE QUALITY ASSESSMENT IN TERMS OF MSE,
PSNR, AND SSIM ON TESTING SET.

Method MSE (x10°) L | PSNR (dB) + | SSIM t
fusion-based [ !] 1.1280 17.6077 0.7721
retinex-based [ 1] 1.2924 17.0168 0.6071

GDCP [10] 4.0160 12.0929 0.5121
histogram prior [+5] 1.7019 15.8215 0.5396
blurriness-based [+6] 19111 15.3180 0.6029

Water CycleGAN [57] 1.7298 15.7508 0.5210
Dense GAN [57] 1.2152 17.2843 0.4426
Water-Net 0.7976 19.1130 0.7971

Water-Net

reference images
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Conclusion and Future Work

o As analyzed in qualitative and quantitative evaluations, there is no method
which always wins in terms of full- and no-reference metrics. In addition,
effective non-reference underwater image quality evaluation metrics are highly
desirable.

o The existing algorithms follow inaccurate image formation models or
assumptions, which inherently limit the performance of underwater image

enhancement.

o Note that the use of inaccurate imaging models is a major problem which keeps
the field of underwater computer vision at standstill.

It’s time for learning-based solutions!
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Conclusion and Future Work

o Extending the constructed dataset towards more challenging underwater images and
underwater videos.

o Trying to design a range map estimation network. With the estimated range maps, we
will make full use of such key prior information to further improve the performance of
underwater image enhancement network.

o Re-organizing the selection of the reference images from more reliable results and
also further train the volunteers on what the degrading effects of attenuation and
backscatter are, and what it looks like when either is improperly corrected.

o Providing multiple reference images for an underwater image and defining the image
quality level of their reference images when we re-organize the selection of the

reference images.
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Top 50 Popular Documents in IEEE TIP

PUGAN: Physical Model-Guided Underwater
Image Enhancement Using GAN with Dual-
Discriminators

Runmin Cong, Wenyu Yang, Wei Zhang, Chongyi Li, Chun-Le Guo,
Qingming Huang, and Sam Kwong

IEEE Transactions on Image Processing, 2023

https://rmcong.github.io/proj PUGAN.html
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Traditional method

Non physical model method

Some of these methods directly
apply existing image enhancement
methods to underwater image data,

and there are also specialized
algorithms designed specifically for
the characteristics of underwater
Images.

Physical models-based method

Mathematical modeling of the
degradation process of underwater
images, parameter estimation
model, and then

obtain clear

based on the
inversion to
underwater images.

27




Traditional method

Water Surface

rd Scatter'\r\g

Backwa

Forward Scattering

I(x) = J(o)t(x) + A(1 — t(x))

where [ is the observed underwater image, | denotes the restored image, A
represents the background light, and t is the transmission map, describing
the portion of the light that is not scattered and reaches the camera.
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Motivation

» Traditional methods based on non-physical models largely rely on handmade feature
design, which makes them prone to over or under enhancement, thereby affecting the
overall visual effect. Although modeling the underwater imaging process is beneficial for
solving the unique visual problems of underwater images, relying solely on physical models
is not reliable because it is difficult to simulate a universal model to cope with complex
underwater environments.

» The deep learning method utilizes the powerful learning ability of deep networks and can
achieve good results in certain situations. However, underwater environments are often
complex and diverse, and relying solely on network learning may distort the enhanced
results.

Therefore, we hope to design a network architecture that can effectively combine

them to play to complementary advantages and collaborative promotion. .



Contributions

» Considering the respective advantages of the physical model and the GAN model for
the UIE task, we propose a Physical Model-Guided framework using GAN with Dual-
Discriminators (PUGAN), consisting of a Phy-G and a Dual-D. Extensive experiments on
three benchmark datasets demonstrate that our PUGAN outperforms state-of-the-art
methods in both qualitative and quantitative metrics.

» We design two subnetworks in the Phy-G, including the Par-subnet and the TSIE-
subnet, for the parameter estimation of physical model and the physical model guided
CNN-based enhancement, respectively. On the one hand, we introduce an intermediate
variable in the Par-subnet, i.e., depth, to enable effective estimation of the
transmission map. On the other hand, we propose a DQ module in TSIE-subnet to
qguantify the distortion degrees and achieve targeted encoder feature reinforcing.

> In addition to the pixel-level global similarly loss and perceptual loss, we design the
style-content adversarial loss in the Dual-D to constrain the style and content of the

enhanced underwater image to be realistic.
32



Our Method

________________________

TSIE-subnet
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Par-subnet

We can inversely derive the calculation formula of

The physical model of the underwater imaging process: the enhanced image | as:
1 1
I(x) = J)t(x) + A0 —t(x)) | > 1) = o5 16) = A =)

_ ,—Bdx)
t(x)=e P correct the color  remove the influence of

background light

t is the transmission map, describing the portion of the obtaining color-corrected
light that is not scattered and reaches the camera,  is the underwater images through
attenuation coefficient of the water, and d is the depth of physical model inversion
during the first stage ;'““““'1“““';
scene. Therefore, the depth can also reflect the D) = —I(x) |
attenuation of the scene to a certain extent. e e rx) |
Attenuation Coefficient Estimator l B¢ = linear (relu(linear (conv.p.r(I1))))

B =cat(B", B8, B*)

~ / a I P 1 ;
/%“Linear rel!!Linear \ B9 P> B () =t(—x)1(x) :-»

Depth Estimator

RDB —»5 - o ’ 5 S
5 P E Pt t = o (conv(conv.b.r(dy - B)))

d d
Parameters Estimation Subnetwork Ty il dll—— g, — — Int
(Par-subnet) - B k. dr = __,B 34

di = o(conv(conv.b.r(RDB(conv.b.r(1)))))




TSIE-subnet

In the first stage, we invert color-enhanced underwater images with better interpretability using the learned physical model
parameters. But as mentioned before, the enhancement effect is not perfect due to the exclusion of background light.

Therefore, we re-enhance the underwater images under the CNN network architecture in the second stage guided by the
color-enhanced images, thereby forming a two-stream architecture to realize the interaction of multi-source information.

Degradation Quantization (DQ)

y

Two-Stream Interaction Enhancement Subnetwork (TSIE-subnet) 35




TSIE-subnet

Degradation Quantization (DQ)

On the one hand, we can locate severely degraded regions by directly comparing E
the difference between the color enhanced image features and the original image !
features, which can be described as:

difi = conv.b.r(le, — e'|) - e(conv.b.r(lej, — €}']) — )

On the other hand, the degree of degradation of underwater images is negatively i

some regions that are prone to degradation from the transmission map:

tr = (1 — maxpool(t)) - e(1 — maxpool(t) — a)

Combining these two aspects, the final weights can be defined as follows:
wi = o (conv((conv.b.r (ty + di fr))))

Subsequently, these weights are applied to the input features e to generate the
updated features é" through the residual connection:

ék=e,’€—|—e,t€®wk
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Loss Function

For Par-subnet:

We first train the attenuation coefficient estimator
and then freeze their parameters to train the depth
estimator and transmission estimator. To control the
accuracy of the transmission map, we use the
transmission map and attenuation coefficient to
compute the depth map again. Therefore, the loss of
Par-subnet is defined as follows:

1 H W
(DD (1d(m, n) — di(m, m)])

L, =
g HxW m=1 n=1
H W 1 3 R
+ 2. 2 (d(m,n) — daGm, mD1+3 > (1B — D)
m=1n=1 c=1
L = A -argminmax L G,D
For Phy-G: 1 s G D GaN1( )
In order to make the generated image as visually + Az-argngnrrbaxLGANz(G, D»)
2

pleasing as possible while maintaining its authenticity
of the image, we use global similarly loss, perceptual

loss and adversarial loss to compose the final loss: arg minmax L an, (G, D)= E(; yy[log D1 (Y)] + Bz yyllog(1 — D1 (E))]
1

+ A3-Li(E,Y)+ A4 -Loat (E,Y)

arg Hgn max LGan,(G, D)= E(1 y,ay[log D2(Y, dy)] + E{1,y,qy[log(1 — D:(E, dE))]
2
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Experiments

Datasets Test-UIEB Test-UFO Test-EUVP
Methods PSNRT MSE| | PSNRT MSE| | PSNRT MSE|
GDCP [4] 13.72 331 14.33 2.87 1335 3.58
ACDE [25] 16.85 1.67 14.31 2.83 15.03 Z35
HLRP [49] 12.17 4.24 11.69 4.66 1132 5.08
MLLE [50] 18.82 1.12 15.05 245 15.06 T2
UNTV [51] 16.57 1.88 17.12 142 17.50 1.39
SPDF [52] 19.85 0.92 17.57 1.37 18.82 1.09
deep-sesr [41] 15.77 2.08 2320 0.38 23.22 0.35
FUnIE-GAN [5] 18.07 1.78 22.97 041 23.53 041
WaterNet [2] 19.81 1.02 19.63 0.83 20.58 0.71
UWCNN [28] 13.26 4.00 1641 1.98 | 0 5. 1.40
JI-Net [38] 18.21 246 16.54 1.78 - -
ACPAB [35] 15.20 252 17.04 1.73 18.06 1.40
TOPAL [37] 19.85 0.93 19.31 0.83 19.98 0.75
Ucolor [6] 20.61 0.78 19.45 0.85 20.08 0.76
PUGAN 21.67 0.54 23.70 0.32 24.05 0.34
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Experiments

Datasets Test-UIEB Test-UFO Test-EUVP
Methods UiIQMT FDUM{T UICQET CCFt | UIQMtT FDUMT UICQET CCFT | UIQMt FDUMT UICQET CCFt
input 2.69 0.36 0.52 19.59 2.48 0.48 0.56 30.03 2.49 0.45 0.55 30.27
Ground truth 3.01 0.55 0.62 27.34 2.88 0.67 0.60 28.53 2.88 0.62 0.58 JE
GDCP [4] 2.67 0.84 0.61 47.28 2.10 0.81 0.66 62.83 2.43 0.87 0.63 57.92
ACDE [25] 341 0.49 0.56 29.05 3.35 0.51 0.57 33.44 3.30 0.43 0.56 33.38
HLRP [49] 1.99 0.81 0.66 55.25 2.47 0.81 0.67 63.23 2.41 0.75 0.65 64.56
MLLE [50] 2.65 0.66 0.61 40.12 2.39 0.76 0.62 56.43 2.28 0.69 0.61 60.31
UNTV [51] 2.94 0.72 0.59 26.37 2.60 0.80 0.62 38.81 2.47 0.77 0.62 40.78
SPDF [52] 3.08 0.44 0.56 17.46 3.18 0.50 0.56 22.96 3.19 0.27 0.55 24.54
deep-sesr [41] 2.97 041 0.53 15.97 3.07 0.61 0.59 23.90 3.10 0.54 0.57 24.34
FUnIE-GAN [5] 3.34 0.68 0.56 21.38 2.97 0.58 0.60 2785 2.99 0.56 0.59 30.10
WaterNet [2] 3.04 0.44 0.58 16.68 3.08 0.53 0.59 25.60 3.06 0.50 0.58 2717
UWCNN [28] 21 0.28 0.48 10.65 2.93 0.28 0.52 1591 2.96 0.39 0.52 19.02
JI-Net [38] 2.67 0.57 0.59 25.98 A 0.54 0.59 28.70 3.24 0.67 0.58 27.38
ACPAB [35] 2.92 0.56 0.58 33.66 3.06 0.51 0.58 33.78 2.98 0.45 0.58 35.90
TOPAL [37] 3.08 0.48 0.57 22.82 502 0.36 0.61 28.85 3.01 0.32 043 28.50
Ucolor [6] 3.30 043 0.57 17.65 3.14 0.52 0.59 24.53 3.2 0.49 0.58 26.51
PUGAN 3.28 0.68 0.62 27.94 2.85 0.64 0.60 3349 2.94 0.53 0.60 30.34
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Experiments

Input

Ground Truth GDCP HLRP MLLE UNTV PUGAN

UIQM / UICQE UlQM /UlCQE UIQM / UICQE UIQM / UICQE UIQM / UICQE UIQM / UICQE UIQM / UICQE

324/045 351 /061 3.11/0.61 1.83/0.68 341/0.59 3.53/0.53 3.62/0.62
FDUM / CCF FDUM / CCF FDUM / CCF FDUM FDUM / CCF FDUM / CCF FDUM

0.25/12.84 0.55/30.77 0.82 /4538 . 0.54 /32.15 0.54/18.78 0.64/]33.42

UIQM /UICQE UlQM /UlCQE UIQM /UICQE  UIQM / UICQE UIQM / U]CQE UIQM / UICQE UIQM / UICQE
261/041 3.42/0.62 271 £0.53 2.36/0.68 3.32/0.60 3.25/0.49 345/0.61

FDUM / CCF FDUM / CCF FDUM / CCF FDUM / CCF FDUM / CCF FDUM / CCF FDUM / CCF
0.22/8.51 0.56 /24.90 0.57/26.96 0.81/76.09 0.55123.55 0.47/12.09 0.63/25.1541



Ablation Study

PSNRT | MSE]

Full model (E) 21.67 | 054

No.l P 3 18.59 | 1.74

—— Je 19.00 | 093
No3 E* 21.48 | 061

Nod w/o Estimator (¢) 21.08 0.67

Nos5 single-stream with [ 19.87 0.77

No6 | single-stream with J | 20.03 | 0.78

TSIE-subnet [ No.7 w/o DQ 1988 | 072
Nos8 w/o di f 20.71 0.68

No9 wlo 20.08 | 0.78

No.10 w/o LGAN, 21.00 0.60

ey om wlo Lean, 2093 | 064
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Conclusion

* In this paper, we propose a physical model-guided GAN model for

underwater image enhancement.

* In the phy-G, we fully combine the physical model and the CNN-based model,
where the Par-subnet generates the color enhanced underwater image by
physical inversion, and the TSIE-subnet equipped with a DQ module aims to
generate the final enhanced image through the regional and differential

feature learning.

* In addition, we design a novel Dual-D structure to judge the reconstruction
results of the generator, following a style-content synergy mechanism.

e Our extensive experiments on different benchmarks demonstrate the
superiority of this method and the effectiveness of each module. 44



Underwater Environment Content Understanding




ICCV23

WaterMask: Instance Segmentation
for Underwater Imagery

Shijie Lian, Hua Li, Runmin Cong, Suqi Li, Wei Zhang, and Sam Kwong

IEEE International Conference on Computer Vision, 2023

https://github.com/LiamLian0727/WaterMask



https://github.com/LiamLian0727/WaterMask

Introduction

(a) Original

(b) Mask RCNN

(c) Ours

» Since instance segmentation s

valuable in estimating object
interactions and inferring scene
geometry, it is of great use in many
underwater vision scenarios such as
underwater robot vision and
underwater vehicle autopilot.

However, the segmentation of image
instances for general underwater
scenes has not been thoroughly
explored. The results of directly
applying natural image segmentation
models to underwater images with
generally degraded quality are often

unsatisfactory!
47



Motivation

> On the one hand, there is no general underwater image instance
segmentation dataset to promote training and evaluation of instance
segmentation models. On the other hand, quality degradation of underwater
images is inevitable due to wavelength and distance-related attenuation and
scattering. Low-quality images often lead to the failure of current
segmentation methods.

> To alleviate this issue, we propose the first underwater image instance
segmentation (UIIS) dataset, aiming to promote the development of instance
segmentation for underwater tasks.

> Simultaneously, we propose WaterMask for multi-object underwater image
instance segmentation according to the intrinsic characteristics of
underwater imagery.

48



Contributions

a) We construct the first general underwater image instance segmentation (UIIS)
dataset containing 4,628 images for 7 categories with pixel-level
annotations for underwater instance segmentation task.

b) We propose the first underwater instance segmentation model WaterMask,
as far as we know. In WaterMask, we devise DSGAT and MFRM modules to
reconstruct and refine the image features with underwater imaging
degradation, and Boundary Mask Strategy with boundary learning loss to
optimize the boundaries of underwater clustered instances.

c) Extensive experiments on popular evaluation criteria demonstrate the
effectiveness of the proposed UIIS dataset and WaterMask.

49



Our UIIS Dataset




Dataset Statistic and Challenges
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> Challenge in the number of instance.
We counted the number of instances in the dataset and the scenes with more than 5 instances accounted for

38.5% of the total and more than 10 instances accounted for 14.2%, in which the image with the most instances

had 162 instances.

> Challenges in small or large instances.
UIIS dataset have 3319 instances less than 14 X 14 pixels, accounting for 11.7% of the total, in addition to 6485

instances of size larger than 128x128 pixels, accounting for 22.8% of the total.

» Challenges in various image resolutions and image scenarios.
Contains images of various resolutions to match handheld camera shots or industrial equipment shots.
Contains images with significantly degraded quality, high saturation or high contrast images to evaluate the

performance of the network in different ocean scenarios. 51



WaterMask
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Difference Similarity Graph Attention Module

Patch u — = % Downsample @ Pixel-wise Addition

. - GAT layer Reshape Operation

ya

{50-5- -

Although underwater images generally suffer from quality
degradation, underwater instances are mostly clustered, which
makes it possible for underwater images to have similar visual
information in multiple places, retaining different degraded details
under different water and lighting conditions. Therefore, we
propose DSGAT for collecting this similar visual information by
computing the attention between image patches so that each
patch can be complemented by the visual information of multiple
other similar patches, and reconstructing the image details by
extracting and combining information through GAT operations.

exp(o(IT[Wh;

| Why)))
> nen, €xp(a(IT[Wh || Why))) ’

By =063 ai;Why).

neN;

Aij =
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Multi-level Feature Refinement Module

We then design the Multi-level Feature Refinement Module (MFRM), which infers different resolution
masks by supplementing the degradation information so that higher resolution features can be utilized

to fully predict the boundaries.

MFRM sends the features extracted
from the feature pyramid by 14X14
RolAlign operation to two 3X3
convolutional layers to generate the
initial instance feature F1. After that,
we utilize the fine-grained features
generated by DSGAT to iteratively refine
the initial F1 by MFRM.

The MFRM will be executed twice,
outputting features F2 and F3, which
will be used as foreground and
boundary predictions, respectively.

—————————————————————————————————————————————
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Boundary Mask Strategy

We feed the features F2 and F3 into the 1°X1 convolution layer to generate instance masks M2 and M3 with different
resolutions. The pixels in F2 have a large receptive field and contain rich high-level information, which is beneficial for
predicting the approximate location of the instance mask, but because of the low feature resolution, the boundaries
of the prediction results tend to be rough. Conversely, F3, while the high-resolution mask reduces the boundary error,
also causes the network to overpredict other pixels of the mask. Therefore, we use M2 and M3 to splice our output

together, with B, = fox(B(M,)) and R,y = f,«(B(M,) V B(G,)) in the following equation.

Boundary Learning Loss

The boundaries of underwater instances are
often blurred, and the pixels used for training
boundary classification are much smaller than
those used for mask classification, leading to the
fact that the commonly used BCE loss is not
effective in helping the network to learn
information from the boundary. We design the
Boundary Learning Loss (BLL) to assign more
weights to the boundary regions, thus forcing
the network to pay more attention to the
classification within the boundary pixels and
thus make more accurate predictions.

Calculated Output:

I 2 N ey gy = 1, if [V2p(M)| < pb?
Pij = { —1. otherwise, B(M) = { 0, otherwise,

*?\[O”LLt == fo (;7\[2) G) BQ)( + j\['_?, G) (l - BQX)

Loss Function:

HxW i = N T2 7 '
> " Ry -BCE(M3,G%) L. =Lp+ Z MLpcr(My, Gy)
iV R, kC[L,2]

Lp=
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Experiments

Method Backbone | Schedule | mAP | APsg AP75 | APs APy APp | APy AP, AP,
Mask R-CNN R50-FPN 1 % 21.7 | 39.5 21.0 8.2 18.3 299 | 420 420 16.6
WaterMask R-CNN R50-FPN 1 % 23.3 | 39.7 24.8 8.2 19.2 33.7 | 43.8 46.5 144
Mask R-CNN* R50-FPN 3% 23.5 | 42.3 237 7.8 19.3 349 | 443 464 158
WaterMask R-CNN# R50-FPN 3% 264 | 43.6 28.8 9.1 21.1 38.1 | 46.9 54.0 18.2
Mask R-CNN R101-FPN 1 % 223 | 40.2 245 8.0 19.7 30.7 | 42.8 46.3 16.7
WaterMask R-CNN R101-FPN 1 % 25.6 | 41.7 27.9 8.8 21.3 36.0 | 45.3 539 19.0
Mask R-CNN*# R101-FPN 3% 234 | 409 253 9.3 19.8 325 | 43.6 49.0 18.0
WaterMask R-CNN# R101-FPN 3% 27.2 | 43.7 293 9.0 21.8 38.7 | 46.3 54.8 20.9
Cascade Mask R-CNN* R101-FPN 3% 255 | 42.8 27.8 7.5 20.1 35.0 | 439 529 223
Cascade WaterMask R-CNN# | R101-FPN 3% 27.1 | 429 304 8.3 21.0 38.9 | 47.0 55.8 225

Table 2: Comparison with Mask R-CNN and Cascade Mask R-CNN on UIIS dataset. Models with ¥ were trained with
3 X schedule using multi-scale training.
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Experiments

Method Backbone | mAP | AP5g AP75 | APs APy, APp | APy AP, AP, | Params
Mask R-CNN* [13] ResNet-101 | 23.4 | 409 25.3 9.3 19.8 325 | 43.6 49.0 18.0 63M
Mask Scoring R-CNN* [14] ResNet-101 | 24.6 | 41.9  26.5 8.4 20.0 343 | 442 528 16.0 7OM
Cascade Mask R-CNN¥ [3] ResNet-101 | 25.5 | 428 27.8 7.5 20.1 350 | 43.9 3529 223 88M
BMask R-CNN* [7] ResNet-101 | 22.1 36.2 244 5.8 17.5 35.0 | 40.7 50.0 17.7 66M
Point Rend [20] ResNet-101 | 24.8 | 41.7 254 | 7.8 21.6 342 | 448 504 18.6 75M
Point Rend* [20] ResNet-101 | 25.9 | 434 276 8.2 20.2 38.6 | 43.3 54.1 20.6 75M
R3-CNNH¥ [28] ResNet-101 | 24.9 | 40.5 27.8 9.7 21.4 336 | 454 522 20.2 7TM
SOLOv2 [29] ResNet-101 | 24.5 | 409  25.1 5.6 194 376 | 36.4 483 20.6 65M
QuerylInst* [10] ResNet-101 | 26.0 | 42.8 27.3 8.2 21.7  35.1 | 43.3 54.1 20.6 | 191M
Mask Tmnsﬁneri{l_()] ResNet-101 | 24.6 | 42.1 26.0 | 7.2 194  36.1 | 43.8 263 19.8 63M
Mask2Former* [6] ResNet-101 | 25.7 | 38.0 27.7 6.3 18.9  38.1 | 41.1 51.9 23.1 63M
WaterMask R-CNN ResNet-101 | 25.6 | 41.7 279 8.8 21.3  36.0 | 45.3 539 19.0 67M
WaterMask R-CNN# ResNet-101 | 27.2 | 4377 29.3 9.0 21.8 389 | 46.3 548 20.9 67M
Cascade WaterMask R-CNN* | ResNet-101 | 27.1 | 429 304 8.3 21.0 389 | 47.0 558 225 | 107M

Table 3: Comparison with the State-of-the-art Methods on UIIS. Models with ¥ were trained with 3 X schedule using

multi-scale training. The data marked in red are the best, and those in blue are the second best.
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Experiments

Figure 1: Qualitative comparison on the UIIS dataset. The first row represents the original image, and the second, third

and fourth rows represent the results of Mask R-CNN, Querylnst and ours, respectively.
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Ablation Study

Methods mAP\AP50 AP-5|APgs APps APp k mAP‘APg,O AP-5 | APgs APps AP
w/o DSGAT | 24.2 1 40.2 257 | 8.2 20.9 33.3 5123.11392 238 | 86 199 31.8
w/o MERM | 23.1 | 384 246 | 84 20.1 31.8 24.0 1 40.3 252 | 8.0 21.1 31.8

N

o9
O ]

w/o BMS [225]141.2 23.1| 84 19.0
w/o BLL |2391]40.7 254 |87 209 329
WaterMask | 25.6 | 41.7 27.9 | 8.8 21.3 36.0

2491422 266 | 83 21.2 349
1125.6 | 41.7 27.9 | 8.8 21.3 36.0
312551414 273 |81 209 36.3

1
1

Table 4: Effectiveness of each component in WaterMask. Table 5: Different value of k. k is the number of farthest
ResNet-101-FPN and 1 X training schedule is adopted. nodes to be connected.

Patch [mAP|APs9 AP75|APs APy APp

8% 8 - - - - - -
12x12]25.6 | 41.7 279 | 88 21.3 36.0
16x16|24.2|40.6 258 | 84 21.6 32.0
20x20(23.5(38.1 2521 87 20.1 325

Table 6: Different Size of Patch. Each graph node corresponds to a 4s X 4s patch, where s is downsampling

stride. When s = 2, the memory required by the model has exceeded the upper limit of the device. o



Conclusion and Future Work

> In this paper, we have constructed the first general underwater image instance
segmentation dataset with pixel-level annotations, which enables us to
comprehensively explore the underwater instance segmentation task.

» According to the intrinsic characteristics of underwater imagery, we have proposed
WaterMask for underwater instance segmentation. Extensive experiments have

demonstrated the effectiveness of the proposed UIIS dataset and WaterMask.

> In future work, we plan to extend the UIIS datasets to broader and more challenging
underwater images and underwater videos.
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Future work

\
E Perception : E ; Evaluation:

i New attempts in learning based i i Explore more reasonable, reliable
i methods, such as small samples i i and interpretable evaluation
E‘ training, un-supervised learning. ’E i‘ methods and measures.

\‘~ ____________________________________ ,/' \\\ ____________________________________

L[O{0YAPEY L )ttty ~
Application:

Huge space to conduct research on visual
computing applications, such as segmentation,
detection, tracking, etc.
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