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Underwater Content Perception & Enhancement




Underwater Image Enhancement

Underwater Image
Enhancement Method

Inputs: Outputs:
Underwater images Enhanced Underwater images

Underwater image enhancement methods improve the visibility of
underwater images, eliminate color deviation and stretch contrast, and
effectively improve the visual quality of images.
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PUGAN: Physical Model-Guided Underwater
Image Enhancement Using GAN with Dual-
Discriminators

Runmin Cong, Wenyu Yang, Wei Zhang, Chongyi Li, Chun-Le Guo,
Qingming Huang, and Sam Kwong

IEEE Transactions on Image Processing, 2023
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Traditional method

Non physical model method

Some of these methods directly
apply existing image enhancement
methods to underwater image data,

and there are also specialized
algorithms designed specifically for
the characteristics of underwater
Images.

Physical models-based method

Mathematical modeling of the
degradation process of underwater
images, parameter estimation
model, and then

obtain clear

based on the
inversion to
underwater images.




Traditional method

Water Surface

d Scatter'\r\g

Backwa

Forward Scattering

I(x) = J(o)t(x) + A(1 — t(x))

where [ is the observed underwater image, | denotes the restored image, A
represents the background light, and t is the transmission map, describing
the portion of the light that is not scattered and reaches the camera.



Motivation

» Traditional methods based on non-physical models largely rely on handmade feature
design, which makes them prone to over or under enhancement, thereby affecting the
overall visual effect. Although modeling the underwater imaging process is beneficial for
solving the unique visual problems of underwater images, relying solely on physical models
is not reliable because it is difficult to simulate a universal model to cope with complex
underwater environments.

» The deep learning method utilizes the powerful learning ability of deep networks and can
achieve good results in certain situations. However, underwater environments are often
complex and diverse, and relying solely on network learning may distort the enhanced
results.

Therefore, we hope to design a network architecture that can effectively combine

them to play to complementary advantages and collaborative promotion. .



Contributions

» Considering the respective advantages of the physical model and the GAN model for
the UIE task, we propose a Physical Model-Guided framework using GAN with Dual-
Discriminators (PUGAN), consisting of a Phy-G and a Dual-D. Extensive experiments on
three benchmark datasets demonstrate that our PUGAN outperforms state-of-the-art
methods in both qualitative and quantitative metrics.

» We design two subnetworks in the Phy-G, including the Par-subnet and the TSIE-
subnet, for the parameter estimation of physical model and the physical model guided
CNN-based enhancement, respectively. On the one hand, we introduce an intermediate
variable in the Par-subnet, i.e., depth, to enable effective estimation of the
transmission map. On the other hand, we propose a DQ module in TSIE-subnet to
qguantify the distortion degrees and achieve targeted encoder feature reinforcing.

> In addition to the pixel-level global similarly loss and perceptual loss, we design the
style-content adversarial loss in the Dual-D to constrain the style and content of the

enhanced underwater image to be realistic.
11



Our Method

________________________

TSIE-subnet
s

: : ------------- i --------- é E
. Attenuation E—I ] () = e (x) .
. Coefficient Estimator T k
—  Depth Estimator
: Par-subnet
E ; ; E-“E-::::: """" A .l.al'y g
JARAL Y -Encoder -
f I =



Par-subnet

We can inversely derive the calculation formula of

The physical model of the underwater imaging process: the enhanced image | as:
1 1
I(x) = J)t(x) + A0 —t(x)) | > 1) = o5 16) = A =)

_ ,—Bdx)
t(x)=e P correct the color  remove the influence of

background light

t is the transmission map, describing the portion of the obtaining color-corrected
light that is not scattered and reaches the camera,  is the underwater images through
attenuation coefficient of the water, and d is the depth of physical model inversion
during the first stage ;'““““'1“““';
scene. Therefore, the depth can also reflect the D) = —I(x) |
attenuation of the scene to a certain extent. e e rx) |
Attenuation Coefficient Estimator l B¢ = linear (relu(linear (conv.p.r(I1))))

B =cat(B", B8, B*)

~ / a I P 1 ;
/%“Linear rel!!Linear \ B9 P> B () =t(—x)1(x) :-»

Depth Estimator

RDB —»5 - o ’ 5 S
5 P E Pt t = o (conv(conv.b.r(dy - B)))

d d
Parameters Estimation Subnetwork Ty il dll—— g, — — Int
(Par-subnet) - B k. dr = __,B 13

di = o(conv(conv.b.r(RDB(conv.b.r(1)))))




TSIE-subnet

In the first stage, we invert color-enhanced underwater images with better interpretability using the learned physical model
parameters. But as mentioned before, the enhancement effect is not perfect due to the exclusion of background light.

Therefore, we re-enhance the underwater images under the CNN network architecture in the second stage guided by the
color-enhanced images, thereby forming a two-stream architecture to realize the interaction of multi-source information.

Degradation Quantization (DQ)

y

Two-Stream Interaction Enhancement Subnetwork (TSIE-subnet) 14




TSIE-subnet

Degradation Quantization (DQ)

On the one hand, we can locate severely degraded regions by directly comparing E
the difference between the color enhanced image features and the original image !
features, which can be described as:

difi = conv.b.r(le, — e'|) - e(conv.b.r(lej, — €}']) — )

On the other hand, the degree of degradation of underwater images is negatively i

some regions that are prone to degradation from the transmission map:

tr = (1 — maxpool(t)) - e(1 — maxpool(t) — a)

Combining these two aspects, the final weights can be defined as follows:
wi = o (conv((conv.b.r (ty + di fr))))

Subsequently, these weights are applied to the input features e to generate the
updated features é" through the residual connection:

ék=e,’€—|—e,t€®wk

15



Loss Function

For Par-subnet:

We first train the attenuation coefficient estimator
and then freeze their parameters to train the depth
estimator and transmission estimator. To control the
accuracy of the transmission map, we use the
transmission map and attenuation coefficient to
compute the depth map again. Therefore, the loss of
Par-subnet is defined as follows:

1 H W
(DD (1d(m, n) — di(m, m)])

L, =
g HxW m=1 n=1
H W 1 3 R
+ 2. 2 (d(m,n) — daGm, mD1+3 > (1B — D)
m=1n=1 c=1
L = A -argminmax L G,D
For Phy-G: 1 s G D GaN1( )
In order to make the generated image as visually + Az-argngnrrbaxLGANz(G, D»)
2

pleasing as possible while maintaining its authenticity
of the image, we use global similarly loss, perceptual

loss and adversarial loss to compose the final loss: arg minmax L an, (G, D)= E(; yy[log D1 (Y)] + Bz yyllog(1 — D1 (E))]
1

+ A3-Li(E,Y)+ A4 -Loat (E,Y)

arg Hgn max LGan, (G, D)= E(1 y,ay[log D2(Y, dy)] + E{1,y,qy[log(1 — DJ(E, dE))]
2
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Experiments

Datasets Test-UIEB Test-UFO Test-EUVP
Methods PSNRT MSE| | PSNRT MSE| | PSNRT MSE|
GDCP [4] 13.72 331 14.33 2.87 1335 3.58
ACDE [25] 16.85 1.67 14.31 2.83 15.03 Z35
HLRP [49] 12.17 4.24 11.69 4.66 1132 5.08
MLLE [50] 18.82 1.12 15.05 245 15.06 T2
UNTV [51] 16.57 1.88 17.12 142 17.50 1.39
SPDF [52] 19.85 0.92 17.57 1.37 18.82 1.09
deep-sesr [41] 15.77 2.08 2320 0.38 23.22 0.35
FUnIE-GAN [5] 18.07 1.78 22.97 041 23.53 041
WaterNet [2] 19.81 1.02 19.63 0.83 20.58 0.71
UWCNN [28] 13.26 4.00 1641 1.98 | 0 5. 1.40
JI-Net [38] 18.21 246 16.54 1.78 - -
ACPAB [35] 15.20 252 17.04 1.73 18.06 1.40
TOPAL [37] 19.85 0.93 19.31 0.83 19.98 0.75
Ucolor [6] 20.61 0.78 19.45 0.85 20.08 0.76
PUGAN 21.67 0.54 23.70 0.32 24.05 0.34

18



Experiments

Datasets Test-UIEB Test-UFO Test-EUVP
Methods UiIQMT FDUM{T UICQET CCFt | UIQMtT FDUMT UICQET CCFT | UIQMt FDUMT UICQET CCFt
input 2.69 0.36 0.52 19.59 2.48 0.48 0.56 30.03 2.49 0.45 0.55 30.27
Ground truth 3.01 0.55 0.62 27.34 2.88 0.67 0.60 28.53 2.88 0.62 0.58 JE
GDCP [4] 2.67 0.84 0.61 47.28 2.10 0.81 0.66 62.83 2.43 0.87 0.63 57.92
ACDE [25] 341 0.49 0.56 29.05 3.35 0.51 0.57 33.44 3.30 0.43 0.56 33.38
HLRP [49] 1.99 0.81 0.66 55.25 2.47 0.81 0.67 63.23 2.41 0.75 0.65 64.56
MLLE [50] 2.65 0.66 0.61 40.12 2.39 0.76 0.62 56.43 2.28 0.69 0.61 60.31
UNTV [51] 2.94 0.72 0.59 26.37 2.60 0.80 0.62 38.81 2.47 0.77 0.62 40.78
SPDF [52] 3.08 0.44 0.56 17.46 3.18 0.50 0.56 22.96 3.19 0.27 0.55 24.54
deep-sesr [41] 2.97 041 0.53 15.97 3.07 0.61 0.59 23.90 3.10 0.54 0.57 24.34
FUnIE-GAN [5] 3.34 0.68 0.56 21.38 2.97 0.58 0.60 2785 2.99 0.56 0.59 30.10
WaterNet [2] 3.04 0.44 0.58 16.68 3.08 0.53 0.59 25.60 3.06 0.50 0.58 2717
UWCNN [28] 21 0.28 0.48 10.65 2.93 0.28 0.52 1591 2.96 0.39 0.52 19.02
JI-Net [38] 2.67 0.57 0.59 25.98 A 0.54 0.59 28.70 3.24 0.67 0.58 27.38
ACPAB [35] 2.92 0.56 0.58 33.66 3.06 0.51 0.58 33.78 2.98 0.45 0.58 35.90
TOPAL [37] 3.08 0.48 0.57 22.82 502 0.36 0.61 28.85 3.01 0.32 043 28.50
Ucolor [6] 3.30 043 0.57 17.65 3.14 0.52 0.59 24.53 3.2 0.49 0.58 26.51
PUGAN 3.28 0.68 0.62 27.94 2.85 0.64 0.60 3349 2.94 0.53 0.60 30.34

19



Experiments

Input

Ground Truth GDCP HLRP MLLE UNTV PUGAN

UIQM / UICQE UlQM /UlCQE UIQM / UICQE UIQM / UICQE UIQM / UICQE UIQM / UICQE UIQM / UICQE

324/045 351 /061 3.11/0.61 1.83/0.68 341/0.59 3.53/0.53 3.62/0.62
FDUM / CCF FDUM / CCF FDUM / CCF FDUM FDUM / CCF FDUM / CCF FDUM

0.25/12.84 0.55/30.77 0.82 /4538 . 0.54 /32.15 0.54/18.78 0.64/]33.42

UIQM /UICQE UlQM /UlCQE UIQM /UICQE  UIQM / UICQE UIQM / U]CQE UIQM / UICQE UIQM / UICQE
261/041 3.42/0.62 271 £0.53 2.36/0.68 3.32/0.60 3.25/0.49 345/0.61

FDUM / CCF FDUM / CCF FDUM / CCF FDUM / CCF FDUM / CCF FDUM / CCF FDUM / CCF
0.22/8.51 0.56 /24.90 0.57/26.96 0.81/76.09 0.55123.55 0.47/12.09 0.63/25.1520



Ablation Study

PSNRT | MSE]

Full model (E) 21.67 | 054

No.l P 3 18.59 | 1.74

—— Je 19.00 | 093
No3 E* 21.48 | 061

Nod w/o Estimator (¢) 21.08 0.67

Nos5 single-stream with [ 19.87 0.77

No6 | single-stream with J | 20.03 | 0.78

TSIE-subnet [ No.7 w/o DQ 1988 | 072
Nos8 w/o di f 20.71 0.68

No9 wlo 20.08 | 0.78

No.10 w/o LGAN, 21.00 0.60

ey om wlo Lean, 2093 | 064

21



Conclusion

* In this paper, we propose a physical model-guided GAN model for

underwater image enhancement.

* In the phy-G, we fully combine the physical model and the CNN-based model,
where the Par-subnet generates the color enhanced underwater image by
physical inversion, and the TSIE-subnet equipped with a DQ module aims to
generate the final enhanced image through the regional and differential

feature learning.

* In addition, we design a novel Dual-D structure to judge the reconstruction
results of the generator, following a style-content synergy mechanism.

e Our extensive experiments on different benchmarks demonstrate the
superiority of this method and the effectiveness of each module. 2
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ICCV23

WaterMask: Instance Segmentation
for Underwater Imagery

Shijie Lian, Hua Li, Runmin Cong *, Suqi Li, Wei Zhang, and Sam Kwong

IEEE International Conference on Computer Vision, 2023

https://github.com/LiamLian0727/WaterMask



https://github.com/LiamLian0727/WaterMask

Introduction

(a) Original

(b) Mask RCNN

(c) Ours

» Since instance segmentation s

valuable in estimating object
interactions and inferring scene
geometry, it is of great use in many
underwater vision scenarios such as
underwater robot vision and
underwater vehicle autopilot.

However, the segmentation of image
instances for general underwater
scenes has not been thoroughly
explored. The results of directly
applying natural image segmentation
models to underwater images with
generally degraded quality are often

unsatisfactory!
25



Motivation

> On the one hand, there is no general underwater image instance
segmentation dataset to promote training and evaluation of instance
segmentation models. On the other hand, quality degradation of underwater
images is inevitable due to wavelength and distance-related attenuation and
scattering. Low-quality images often lead to the failure of current
segmentation methods.

> To alleviate this issue, we propose the first underwater image instance
segmentation (UIIS) dataset, aiming to promote the development of instance
segmentation for underwater tasks.

> Simultaneously, we propose WaterMask for multi-object underwater image
instance segmentation according to the intrinsic characteristics of
underwater imagery.

26



Contributions

a) We construct the first general underwater image instance segmentation (UIIS)
dataset containing 4,628 images for 7 categories with pixel-level
annotations for underwater instance segmentation task.

b) We propose the first underwater instance segmentation model WaterMask,
as far as we know. In WaterMask, we devise DSGAT and MFRM modules to
reconstruct and refine the image features with underwater imaging
degradation, and Boundary Mask Strategy with boundary learning loss to
optimize the boundaries of underwater clustered instances.

c) Extensive experiments on popular evaluation criteria demonstrate the
effectiveness of the proposed UIIS dataset and WaterMask.

27



Our UIIS Dataset




Dataset Statistic and Challenges
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> Challenge in the number of instance.
We counted the number of instances in the dataset and the scenes with more than 5 instances accounted for

38.5% of the total and more than 10 instances accounted for 14.2%, in which the image with the most instances

had 162 instances.

> Challenges in small or large instances.
UIIS dataset have 3319 instances less than 14 X 14 pixels, accounting for 11.7% of the total, in addition to 6485

instances of size larger than 128x128 pixels, accounting for 22.8% of the total.

» Challenges in various image resolutions and image scenarios.
Contains images of various resolutions to match handheld camera shots or industrial equipment shots.
Contains images with significantly degraded quality, high saturation or high contrast images to evaluate the

performance of the network in different ocean scenarios. 29



WaterMask
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Difference Similarity Graph Attention Module

Patch u — = % Downsample @ Pixel-wise Addition

. - GAT layer Reshape Operation

ya

{50-5- -

Although underwater images generally suffer from quality
degradation, underwater instances are mostly clustered, which
makes it possible for underwater images to have similar visual
information in multiple places, retaining different degraded details
under different water and lighting conditions. Therefore, we
propose DSGAT for collecting this similar visual information by
computing the attention between image patches so that each
patch can be complemented by the visual information of multiple
other similar patches, and reconstructing the image details by
extracting and combining information through GAT operations.

exp(o(IT[Wh;

| Why)))
> nen, €xp(a(IT[Wh || Why))) ’

By =063 ai;Why).

neN;

Aij =
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Multi-level Feature Refinement Module

We then design the Multi-level Feature Refinement Module (MFRM), which infers different resolution
masks by supplementing the degradation information so that higher resolution features can be utilized

to fully predict the boundaries.

MFRM sends the features extracted
from the feature pyramid by 14X14
RolAlign operation to two 3X3
convolutional layers to generate the
initial instance feature F1. After that,
we utilize the fine-grained features
generated by DSGAT to iteratively refine
the initial F1 by MFRM.

The MFRM will be executed twice,
outputting features F2 and F3, which
will be used as foreground and
boundary predictions, respectively.

—————————————————————————————————————————————

i MFRM module W xw xc/2 |
|
| P [
| 0 2X Up |
I 3 I
Gl n
| A — 2h' x2w' X ¢/2 |
/ onv
L hXwXc hXw Xc |
| = <
-+ : O - :
‘ w - 2h' x 2w !
‘XWX e KXW X2¢ | K
® RolAlign @ Coarse-grained Feature
© Concatenation (7 Fine-grained Feature
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Boundary Mask Strategy

We feed the features F2 and F3 into the 1°X1 convolution layer to generate instance masks M2 and M3 with different
resolutions. The pixels in F2 have a large receptive field and contain rich high-level information, which is beneficial for
predicting the approximate location of the instance mask, but because of the low feature resolution, the boundaries
of the prediction results tend to be rough. Conversely, F3, while the high-resolution mask reduces the boundary error,
also causes the network to overpredict other pixels of the mask. Therefore, we use M2 and M3 to splice our output

together, with B, = fox(B(M,)) and R,y = f,«(B(M,) V B(G,)) in the following equation.

Boundary Learning Loss

The boundaries of underwater instances are
often blurred, and the pixels used for training
boundary classification are much smaller than
those used for mask classification, leading to the
fact that the commonly used BCE loss is not
effective in helping the network to learn
information from the boundary. We design the
Boundary Learning Loss (BLL) to assign more
weights to the boundary regions, thus forcing
the network to pay more attention to the
classification within the boundary pixels and
thus make more accurate predictions.

Calculated Output:

I 2 N ey gy = 1, if [V2p(M)| < pb?
Pij = { —1. otherwise, B(M) = { 0, otherwise,

*?\[O”LLt == fo (;7\[2) G) BQ)( + j\['_?, G) (l - BQX)

Loss Function:

HxW i = N T2 7 '
> " Ry -BCE(M3,G%) L. =Lp+ Z MLpcr(My, Gy)
iV R, kC[L,2]

Lp=
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Experiments

Method Backbone | Schedule | mAP | APsg AP75 | APs APy APp | APy AP, AP,
Mask R-CNN R50-FPN 1 % 21.7 | 39.5 21.0 8.2 18.3 299 | 420 420 16.6
WaterMask R-CNN R50-FPN 1 % 23.3 | 39.7 24.8 8.2 19.2 33.7 | 43.8 46.5 144
Mask R-CNN* R50-FPN 3% 23.5 | 42.3 237 7.8 19.3 349 | 443 464 158
WaterMask R-CNN# R50-FPN 3% 264 | 43.6 28.8 9.1 21.1 38.1 | 46.9 54.0 18.2
Mask R-CNN R101-FPN 1 % 223 | 40.2 245 8.0 19.7 30.7 | 42.8 46.3 16.7
WaterMask R-CNN R101-FPN 1 % 25.6 | 41.7 27.9 8.8 21.3 36.0 | 45.3 539 19.0
Mask R-CNN*# R101-FPN 3% 234 | 409 253 9.3 19.8 325 | 43.6 49.0 18.0
WaterMask R-CNN# R101-FPN 3% 27.2 | 43.7 293 9.0 21.8 38.7 | 46.3 54.8 20.9
Cascade Mask R-CNN* R101-FPN 3% 255 | 42.8 27.8 7.5 20.1 35.0 | 439 529 223
Cascade WaterMask R-CNN# | R101-FPN 3% 27.1 | 429 304 8.3 21.0 38.9 | 47.0 55.8 225

Table 2: Comparison with Mask R-CNN and Cascade Mask R-CNN on UIIS dataset. Models with ¥ were trained with
3 X schedule using multi-scale training.

34



Experiments

Method Backbone | mAP | AP5g AP75 | APs APy, APp | APy AP, AP, | Params
Mask R-CNN* [13] ResNet-101 | 23.4 | 409 25.3 9.3 19.8 325 | 43.6 49.0 18.0 63M
Mask Scoring R-CNN* [14] ResNet-101 | 24.6 | 41.9  26.5 8.4 20.0 343 | 442 528 16.0 7OM
Cascade Mask R-CNN¥ [3] ResNet-101 | 25.5 | 428 27.8 7.5 20.1 350 | 43.9 3529 223 88M
BMask R-CNN* [7] ResNet-101 | 22.1 36.2 244 5.8 17.5 35.0 | 40.7 50.0 17.7 66M
Point Rend [20] ResNet-101 | 24.8 | 41.7 254 | 7.8 21.6 342 | 448 504 18.6 75M
Point Rend* [20] ResNet-101 | 25.9 | 434 276 8.2 20.2 38.6 | 43.3 54.1 20.6 75M
R3-CNNH¥ [28] ResNet-101 | 24.9 | 40.5 27.8 9.7 21.4 336 | 454 522 20.2 7TM
SOLOv2 [29] ResNet-101 | 24.5 | 409  25.1 5.6 194 376 | 36.4 483 20.6 65M
QuerylInst* [10] ResNet-101 | 26.0 | 42.8 27.3 8.2 21.7  35.1 | 43.3 54.1 20.6 | 191M
Mask Tmnsﬁneri{l_()] ResNet-101 | 24.6 | 42.1 26.0 | 7.2 194  36.1 | 43.8 263 19.8 63M
Mask2Former* [6] ResNet-101 | 25.7 | 38.0 27.7 6.3 18.9  38.1 | 41.1 51.9 23.1 63M
WaterMask R-CNN ResNet-101 | 25.6 | 41.7 279 8.8 21.3  36.0 | 45.3 539 19.0 67M
WaterMask R-CNN# ResNet-101 | 27.2 | 4377 29.3 9.0 21.8 389 | 46.3 548 20.9 67M
Cascade WaterMask R-CNN* | ResNet-101 | 27.1 | 429 304 8.3 21.0 389 | 47.0 558 225 | 107M

Table 3: Comparison with the State-of-the-art Methods on UIIS. Models with ¥ were trained with 3 X schedule using

multi-scale training. The data marked in red are the best, and those in blue are the second best.
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Experiments

Figure 1: Qualitative comparison on the UIIS dataset. The first row represents the original image, and the second, third

and fourth rows represent the results of Mask R-CNN, Querylnst and ours, respectively.
36




Ablation Study

Methods mAP\AP50 AP-5|APgs APps APp k mAP‘APg,O AP-5 | APgs APps AP
w/o DSGAT | 24.2 1 40.2 257 | 8.2 20.9 33.3 5123.11392 238 | 86 199 31.8
w/o MERM | 23.1 | 384 246 | 84 20.1 31.8 24.0 1 40.3 252 | 8.0 21.1 31.8

N

o9
O ]

w/o BMS [225]141.2 23.1| 84 19.0
w/o BLL |2391]40.7 254 |87 209 329
WaterMask | 25.6 | 41.7 27.9 | 8.8 21.3 36.0

2491422 266 | 83 21.2 349
1125.6 | 41.7 27.9 | 8.8 21.3 36.0
312551414 273 |81 209 36.3

1
1

Table 4: Effectiveness of each component in WaterMask. Table 5: Different value of k. k is the number of farthest
ResNet-101-FPN and 1 X training schedule is adopted. nodes to be connected.

Patch [mAP|APs9 AP75|APs APy APp

8% 8 - - - - - -
12x12]25.6 | 41.7 279 | 88 21.3 36.0
16x16|24.2|40.6 258 | 84 21.6 32.0
20x20(23.5(38.1 2521 87 20.1 325

Table 6: Different Size of Patch. Each graph node corresponds to a 4s X 4s patch, where s is downsampling

stride. When s = 2, the memory required by the model has exceeded the upper limit of the device. .



Conclusion and Future Work

> In this paper, we have constructed the first general underwater image instance
segmentation dataset with pixel-level annotations, which enables us to
comprehensively explore the underwater instance segmentation task.

» According to the intrinsic characteristics of underwater imagery, we have proposed
WaterMask for underwater instance segmentation. Extensive experiments have

demonstrated the effectiveness of the proposed UIIS dataset and WaterMask.

> In future work, we plan to extend the UIIS datasets to broader and more challenging
underwater images and underwater videos.
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Introduction

¥ Ours: USIS-SAM (Cextra prediction J

> Salient Instance Segmentation

60“-:3%) * gég{igg(%gﬁg)m (§IS), an eme.rging and promising

N CRil ROSRCCTE) 3 visual task, aims to segment out

Ne S ® URank+ QTR (TMM'23) visually salient objects in a scene

e RN and distinguish individual salient

R TR WaterVask instances, which is beneficial for

ol o b . 1y vision tasks such as marine

* ' / resource exploration and

" B underwater human-computer
Alg s AP\ Rank+RDPNet Ours Interaction.

» However, directly transferring conventional SIS methods for land images to underwater scenes
may struggle to achieve ideal performance attribute to the domain gap of intrinsic
characteristics and extrinsic circumstances between land and underwater living.



Motivation

» On the one hand, there is no general underwater salient image instance
segmentation dataset to promote training and evaluation of the underwater salient
instance segmentation models.

» On the other hand, even state-of-the-art SIS models trained on large-scale land-
based datasets coupled with the best underwater image enhancement algorithms
cannot achieve satisfactory performance in underwater environments.

® To alleviate this issue, we construct the first large-scale underwater salient instance
segmentation (USIS) dataset, USIS10K, aiming to promote the development of
salient instance segmentation for underwater tasks.

® Simultaneously, we first attempt to apply Segment Anything Model (SAM) to
underwater salient instance segmentation and propose USIS-SAM, aiming to
improve the segmentation accuracy in complex underwater scenes.



Contributions

a)

b)

We construct the first large-scale dataset, USIS10K, for the underwater salient
instance segmentation task, which contains 10,632 images and pixel-level
annotations of 7 categories. As far as we know, this is the largest salient instance
segmentation dataset, and includes Class-Agnostic and Multi-Class labels
simultaneously.

We propose the first underwater salient instance segmentation model, USIS-SAM,
as far as we know. In USIS-SAM, we design Underwater Adaptive ViT Encoder to
incorporate underwater visual prompts into network via adapters, and Salient
Feature Prompter Generator to automatically generate salient prompters, guiding
an end-to-end segmentation network.

Extensive public evaluation criteria and large numbers of experiments verify the
effectiveness of our USIS10K dataset and USIS-SAM.



USIS10K Dataset

Dataset Year Task Label Number Max
ILSO 2017 SIS X 2,000 8
SOC 2018 SIS v 3,000 8

SISIOK | 2023 SIS X 10,301 9

USIS10K | 2024 USIS v 10,632 9
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Dataset Statistic and Challenges
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» Challenge in the number of instance.
In USIS10K dataset, multiple salient instances may exist in a single image. There are 1731 images with more than 3
salient instances in our dataset, accounting for 16.3% of the total.

> Challenges in small or large instances.
In USIS10K dataset, the average size of the salient instances is 34,336 pixels (approximately 185X185 pixels),
which averaged 10.3% of the image size. There are 3053 salient instances smaller than 1% of the image area,
(16.0% of the total), while there are 1733 instances larger than 30% of the image area, (9.1% of the total).

» Challenges in channel intensity of underwater images.
Optical images inevitably suffer from color attenuation due to the selective absorption of water at different
wavelengths. This poses an additional challenge for the network to properly understand and handle the image

color distortion caused by this attenuation A



Dataset Statistic and Challenges

8000
> Location of Salient Objects (Less central bias).

In the SIS10k dataset, approximately 13.5% of the
locations have fewer than 1000 instances and 32%
have fewer than 2,000 instances, while in our dataset,
only 2.75% of the locations have fewer than 1,000
instances and 22.5% have fewer than 2,000 instances.
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Saliency is often related to the contrast between
foreground and background, and it is critical to
check whether salient instances are easy to detect.
It can be seen that the global contrast of USIS10K is
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USIS-SAM
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Figure 1. (a) USIS-SAM framework. The USIS-SAM framework modifies the SAM by adding the Underwater
Adaptive ViT Encoder and the Salient Feature Prompt Generator. (b) The structure of UA-VIT. In the figure,
SFFM stands for Salient Feature Fusion Module, CA stands for Channel Adapter.



Underwater Adaptive ViT Encoder

In USIS-SAM, we design the Underwater Adaptive ViT (UA-VIT) to
integrate underwater visual prompts into the network via
adapter and channel adapter. UA-VIiT enables a more effective

utilization of the SAM image encoder in underwater scenarios.

Adapter :
P = MLPyy; (U(MLPprompt(F)))f

adapter layer. o is the activation function.

where F is the input feature, and P is the output prompt for each

~

J

Channel Adapter :
C = FxConvyy(o(Convgygyn (Pool(F)))),

\1><1 convolutional layer, and Pool is an average pooling layer.

where C is the output feature after channel adapter, Conv is a

~
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Salient Feature Prompt Generator
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Figure 2. The structure of Salient Feature Prompt Generator

(SFPG). The SFPG module efficiently filters out non-salient noise, =~ Ffgure 3. Visualize features generated by
allowing for robust feature aggregation of salient instances. the Salient Feature Prompt Generator.

The USIS task needs the model to automatically recognize and segment each salient object in underwater
images. However, SAM requires the user to explicitly provide foreground points, boxes, or texts as prompts to
guide the model segmentation. Therefore, we design the Salient Feature Prompt Generator to directly predict
prompts embedding of salient instances, enabling end-to-end performing the USIS task



Experiments

Method Epoch Backbone Class-Agnostic Multi-Class
mAP APs;y APy5 | mAP  AP5;y APr;
S4Net (Fan et al., 2019) 60 ResNet-50 32.8  64.1 27.3 239 435 244
RDPNet (Wu et al., 2021) 50 ResNet-50 53.8 77.8 619 | 379 553 42.7
RDPNet (Wu et al., 2021) 50 ResNet-101 | 54.7  78.3 63.0 | 393 559 454
OQTR (Pei et al., 2023) 120 ResNet-50 56.6 793 62.6 19.7 30.6 219
URank+RDPNet (Wu et al., 2021) 50 ResNet-101 | 52.0  80.7 62.0 | 359 525 41.4
URank+OQTR (Pei et al., 2023) 120 ResNet-50 | 49.3 743 56.2 | 20.8 32.1 23.3
WaterMask (Lian et al., 2023) 36 ResNet-50 58.3 80.2 66.5 377 540 425
WaterMask (Lian et al., 2023) 36 ResNet-101 | 59.0  80.6 672 | 38.7 549 432
SAM+BBox (Kirillov et al., 2023) 24 ViT-H 459 659 52.1 264 389 29.0
SAM+Mask (Kirillov et al., 2023) 24 ViT-H 55.1 80.2 62.8 385 563 44.0
RSPrompter (Chen et al., 2023a) 24 ViT-H 58.2 79.9 65.9 40.2 55.3 44.8
URank+RSPrompter (Chen et al., 2023a) 24 ViT-H 506 744 566 | 38.7 554 436
USIS-SAM 24 ViT-H 59.7 81.6 67.7 | 43.1 59.0 485

Table 1. Quantitative comparisons with state-of-the-arts on the USIS10K datasets. Urank stands for an
underwater image enhancement method in UnderwaterRanker (AAAI 2023 oral), SAM+BBox uses inference
results from Faster RCNN as prompts for prediction, SAM+Mask stands for Mask RCNN networks use SAM
as backbone. The RSPrompter in the table is the RSPrompter-anchor framework.



Experiments
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Figure 4. Qualitative comparison on the USIS10K dataset. Each salient instance is represented by a
unique color, and the segmented mask is superimposed on the image.



Ablation Study

Methods mAP APs AP-s

Full Model 43.1 59.0 48.5
w/o UA-VIT | 415 (-1.6) 57.4(-1.6) 47.0(-1.5)
replace SFPG | 42.2 (-0.9) 583 (-0.7) 47.5(-1.0)

Methods mAP AP5 AP75
OQTR (Pei et al., 2023) 67.2 88.1 81.7
USIS-SAM 70.1 89.0 78.2

Table 2. Effectiveness of each component in
USIS-SAM, replace SFPG means to use Multi-
scale  Feature Enhancer Module in
RSPrompter (TGARS’24) instead of SFPG.

Table 3. Generalization Ability of USIS-SAM.
Quantitative comparisons with state-of-the-
art methods on SIS10K indicate that USIS-
SAM did not overfit our dataset.

Methods mAP APr AP

Methods mAP APs5 AP

Full Model 43.1 59.0 48.5
w/o Adapter | 41.7(-1.4) 573 (-1.7) 47.3(-1.2)
w/o CA 42.0(-1.1) 57.7(-1.3) 47.1(-1.4)

Full Model 43.1 59.0 48.5
w/o SFFM 423 (-0.8) 58.5(-0.5) 47.2(-1.3)
w/o Multi-Conv | 42.5 (-0.6) 58.6 (-0.4) 47.7 (-0.8)

Table 4. Effectiveness of each component in
Underwater Adaptive VIiT Encoder, w/o
Adapter and w/o CA denote the removal of
Adapters and Channel Adapter.

Table 5. Effectiveness of each component in
Salient Feature Prompt Generator, w/o SFFM
and w/o Multi-Conv denote the removal of
the salient feature fusion module and multi-
scale convolution module.



Conclusion and Future Work

» We have constructed the first general underwater salient image instance
segmentation dataset with pixel-level annotations, which enables us to
comprehensively explore the underwater salient instance segmentation task.

> we first attempt to apply Segment Anything (SAM) model to underwater
salient instance segmentation and propose USIS-SAM, aiming to improve the
segmentation accuracy in complex underwater scenes. Extensive experiments
have validated the effectiveness and generalizability of USIS-SAM.

> In future work, we plan to extend the USIS datasets to broader and more

challenging underwater images and underwater videos.
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