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习近平总书记在二十大报告中指出——
（四）促进区域协调发展。发展海洋经济，
保护海洋生态环境，加快建设海洋强国。

中华人民共和国中央人民政府
《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》

积极拓展海洋经济发展空间。聚焦新一代信息技术、生物技术、新能源、新材料、高端装备、新能源
汽车、绿色环保以及航空航天、海洋装备等战略性新兴产业，加快关键核心技术创新应用，增强要素
保障能力，培育壮大产业发展新动能。深化军民科技协同创新，加强海洋、空天、网络空间、生物、
新能源、人工智能、量子科技等领域军民统筹发展，推动军地科研设施资源共享，推进军地科研成果
双向转化应用和重点产业发展。

智慧海洋工程是全面提升经略海洋能力的整体解决方案。
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Introduction

Equipment Underwater imaging 4





Underwater Image Enhancement

Underwater Image 
Enhancement Method

Inputs: 
Underwater images

Outputs: 
Enhanced Underwater images

Underwater image enhancement methods improve the visibility of 
underwater images, eliminate color deviation and stretch contrast, and 
effectively improve the visual quality of images. 
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Runmin Cong, Wenyu Yang, Wei Zhang, Chongyi Li, Chun-Le Guo, 
Qingming Huang, and Sam Kwong

IEEE Transactions on Image Processing, 2023

https://rmcong.github.io/proj_PUGAN.html

PUGAN: Physical Model-Guided Underwater 
Image Enhancement Using GAN with Dual-

Discriminators

Top 50 Popular Documents in IEEE TIP

https://rmcong.github.io/proj_RRNet.html


Traditional method

Some of these methods directly 
apply existing image enhancement 
methods to underwater image data, 
and there are also specialized 
algorithms designed for 
the characteristics of underwater 
images.

Non physical model method

Mathematical modeling of the 
degradation process of underwater 
images, parameter estimation 
based on the model, and then 
inversion to obtain clear 
underwater images. 

Physical models-based method
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Traditional method

where 𝐼 is the observed underwater image, 𝐽 denotes the restored image, 𝐴
represents the background light, and 𝑡 is the transmission map, describing
the portion of the light that is not scattered and reaches the camera.

𝐼 𝑥 = 𝐽 𝑥 𝑡 𝑥 + 𝐴(1 − 𝑡(𝑥))
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Motivation

Ø Traditional methods based on non-physical models largely rely on handmade feature 
design, which makes them prone to over or under enhancement, thereby affecting the 
overall visual effect. Although modeling the underwater imaging process is beneficial for 
solving the unique visual problems of underwater images, relying solely on physical models 
is not reliable because it is difficult to simulate a universal model to cope with complex 
underwater environments.

Ø The deep learning method utilizes the powerful learning ability of deep networks and can 
achieve good results in certain situations. However, underwater environments are often 
complex and diverse, and relying solely on network learning may distort the enhanced 
results.

Therefore, we hope to design a network architecture that can effectively combine 
them to play to complementary advantages and collaborative promotion. 
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Contributions
Ø Considering the respective advantages of the physical model and the GAN model for 

the UIE task, we propose a Physical Model-Guided framework using GAN with Dual-
Discriminators (PUGAN), consisting of a Phy-G and a Dual-D. Extensive experiments on 
three benchmark datasets demonstrate that our PUGAN outperforms state-of-the-art 
methods in both qualitative and quantitative metrics.

Ø We design two subnetworks in the Phy-G, including the Par-subnet and the TSIE-
subnet, for the parameter estimation of physical model and the physical model guided 
CNN-based enhancement, respectively. On the one hand, we introduce an intermediate 
variable in the Par-subnet, i.e., depth, to enable effective estimation of the 
transmission map. On the other hand, we propose a DQ module in TSIE-subnet to 
quantify the distortion degrees and achieve targeted encoder feature reinforcing.

Ø In addition to the pixel-level global similarly loss and perceptual loss, we design the 
style-content adversarial loss in the Dual-D to constrain the style and content of the 
enhanced underwater image to be realistic.
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Our Method
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Par-subnet

The physical model of the underwater imaging process：

𝑡 is the transmission map, describing the portion of the
light that is not scattered and reaches the camera, 𝛽 is the
attenuation coefficient of the water, and 𝑑 is the depth of
scene. Therefore, the depth can also reflect the
attenuation of the scene to a certain extent.

obtaining color-corrected
underwater images through
physical model inversion
during the first stage

We can inversely derive the calculation formula of
the enhanced image 𝐽	 as:

correct the color remove the influence of 
background light
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TSIE-subnet
In the first stage, we invert color-enhanced underwater images with better interpretability using the learned physical model 
parameters. But as mentioned before, the enhancement effect is not perfect due to the exclusion of background light. 

Therefore, we re-enhance the underwater images under the CNN network architecture in the second stage guided by the 
color-enhanced images, thereby forming a two-stream architecture to realize the interaction of multi-source information. 
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TSIE-subnet

Combining these two aspects, the final weights can be defined as follows：

Subsequently, these weights are applied to the input features 𝑒! to generate the 
updated features 𝑒̂!  through the residual connection: 

On the one hand, we can locate severely degraded regions by directly comparing
the difference between the color enhanced image features and the original image
features, which can be described as:

On the other hand, the degree of degradation of underwater images is negatively
correlated with the transmission characteristics. Therefore, we can also identify
some regions that are prone to degradation from the transmission map:
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Loss Function

For Phy-G:
In order to make the generated image as visually
pleasing as possible while maintaining its authenticity
of the image, we use global similarly loss, perceptual
loss and adversarial loss to compose the final loss:

For Par-subnet：
We first train the attenuation coefficient estimator
and then freeze their parameters to train the depth
estimator and transmission estimator. To control the
accuracy of the transmission map, we use the
transmission map and attenuation coefficient to
compute the depth map again. Therefore, the loss of
Par-subnet is defined as follows:
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Experiments
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Experiments
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Experiments
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Experiments
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Ablation Study
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Conclusion

• In this paper, we propose a physical model-guided GAN model for 
underwater image enhancement. 

• In the phy-G, we fully combine the physical model and the CNN-based model, 
where the Par-subnet generates the color enhanced underwater image by 
physical inversion, and the TSIE-subnet equipped with a DQ module aims to 
generate the final enhanced image through the regional and differential 
feature learning. 

• In addition, we design a novel Dual-D structure to judge the reconstruction 
results of the generator, following a style-content synergy mechanism. 

• Our extensive experiments on different benchmarks demonstrate the 
superiority of this method and the effectiveness of each module. 22
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Introduction

Ø Since instance segmentation is 
valuable in estimating object 
interactions and inferring scene 
geometry, it is of great use in many 
underwater vision scenarios such as 
underwater robot vision and 
underwater vehicle autopilot.

Ø However, the segmentation of image 
instances for general underwater 
scenes has not been thoroughly 
explored. The results of directly 
applying natural image segmentation 
models to underwater images with 
generally degraded quality are often 
unsatisfactory!
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Motivation

Ø On the one hand, there is no general underwater image instance 
segmentation dataset to promote training and evaluation of instance 
segmentation models. On the other hand, quality degradation of underwater 
images is inevitable due to wavelength and distance-related attenuation and 
scattering. Low-quality images often lead to the failure of current 
segmentation methods.

Ø To alleviate this issue, we propose the first underwater image instance 
segmentation (UIIS) dataset, aiming to promote the development of instance 
segmentation for underwater tasks. 

Ø Simultaneously, we propose WaterMask for multi-object underwater image 
instance segmentation according to the intrinsic characteristics of 
underwater imagery.
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Contributions

a) We construct the first general underwater image instance segmentation (UIIS) 
dataset containing 4,628 images for 7 categories with pixel-level 
annotations for underwater instance segmentation task.

b) We propose the first underwater instance segmentation model WaterMask, 
as far as we know. In WaterMask, we devise DSGAT and MFRM modules to 
reconstruct and refine the image features with underwater imaging 
degradation, and Boundary Mask Strategy with boundary learning loss to 
optimize the boundaries of underwater clustered instances.

c) Extensive experiments on popular evaluation criteria demonstrate the 
effectiveness of the proposed UIIS dataset and WaterMask.
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Our UIIS Dataset
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Dataset Statistic and Challenges

29

Ø Challenge in the number of instance.
We counted the number of instances in the dataset and the scenes with more than 5 instances accounted for 
38.5% of the total and more than 10 instances accounted for 14.2%, in which the image with the most instances 
had 162 instances. 

Ø Challenges in small or large instances.
UIIS dataset have 3319 instances less than 14×14 pixels, accounting for 11.7% of the total, in addition to 6485 
instances of size larger than 128x128 pixels, accounting for 22.8% of the total.

Ø Challenges in various image resolutions and image scenarios.
Contains images of various resolutions to match handheld camera shots or industrial equipment shots. 
Contains images with significantly degraded quality, high saturation or high contrast images to evaluate the 
performance of the network in different ocean scenarios.



WaterMask
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Difference Similarity Graph Attention Module

Although underwater images generally suffer from quality 
degradation, underwater instances are mostly clustered, which 
makes it possible for underwater images to have similar visual 
information in multiple places, retaining different degraded details 
under different water and lighting conditions. Therefore, we 
propose DSGAT for collecting this similar visual information by 
computing the attention between image patches so that each 
patch can be complemented by the visual information of multiple 
other similar patches, and reconstructing the image details by 
extracting and combining information through GAT operations.
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Multi-level Feature Refinement Module

MFRM sends the features extracted 
from the feature pyramid by 14×14 
RoIAlign operation to two 3×3 
convolutional layers to generate the 
initial instance feature F1. After that, 
we utilize the fine-grained features 
generated by DSGAT to iteratively refine 
the initial F1 by MFRM.

The MFRM will be executed twice, 
outputting features F2 and F3, which 
will be used as foreground and 
boundary predictions, respectively.

We then design the Multi-level Feature Refinement Module (MFRM), which infers different resolution 
masks by supplementing the degradation information so that higher resolution features can be utilized 
to fully predict the boundaries.
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Boundary Mask Strategy

Boundary Learning Loss

We feed the features F2 and F3 into the 1×1 convolution layer to generate instance masks M2 and M3 with different 
resolutions. The pixels in F2 have a large receptive field and contain rich high-level information, which is beneficial for 
predicting the approximate location of the instance mask, but because of the low feature resolution, the boundaries 
of the prediction results tend to be rough. Conversely, F3, while the high-resolution mask reduces the boundary error, 
also causes the network to overpredict other pixels of the mask. Therefore, we use M2 and M3 to splice our output 
together, with 𝐵!× = 𝑓!×(𝐵(𝑀!)) and 𝑅!× = 𝑓!×(𝐵(𝑀!) ∨ 𝐵(G!)) in the following equation.

The boundaries of underwater instances are 
often blurred, and the pixels used for training 
boundary classification are much smaller than 
those used for mask classification, leading to the 
fact that the commonly used BCE loss is not 
effective in helping the network to learn 
information from the boundary. We design the 
Boundary Learning Loss (BLL) to assign more 
weights to the boundary regions, thus forcing 
the network to pay more attention to the 
classification within the boundary pixels and 
thus make more accurate predictions.

Calculated Output:

Loss Function:
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Experiments

Table 2: Comparison with Mask R-CNN and Cascade Mask R-CNN on UIIS dataset. Models with ‡ were trained with 
3× schedule using multi-scale training.
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Experiments

Table 3: Comparison with the State-of-the-art Methods on UIIS. Models with ‡ were trained with 3× schedule using 
multi-scale training. The data marked in red are the best, and those in blue are the second best.

35



Experiments

Figure 1: Qualitative comparison on the UIIS dataset. The first row represents the original image, and the second, third 
and fourth rows represent the results of Mask R-CNN, QueryInst and ours, respectively.

36



Ablation Study

Table 4: Effectiveness of each component in WaterMask. 
ResNet-101-FPN and 1× training schedule is adopted.

Table 5: Different value of k. k is the number of farthest 
nodes to be connected.

Table 6: Different Size of Patch. Each graph node corresponds to a 4s × 4s patch, where s is downsampling 
stride. When s = 2, the memory required by the model has exceeded the upper limit of the device.
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Conclusion and Future Work

Ø In this paper, we have constructed the first general underwater image instance 
segmentation dataset with pixel-level annotations, which enables us to 
comprehensively explore the underwater instance segmentation task. 

Ø According to the intrinsic characteristics of underwater imagery, we have proposed 
WaterMask for underwater instance segmentation. Extensive experiments have 
demonstrated the effectiveness of the proposed UIIS dataset and WaterMask. 

Ø In future work, we plan to extend the UIIS datasets to broader and more challenging 
underwater images and underwater videos.
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Introduction

Ø However, directly transferring conventional SIS methods for land images to underwater scenes 
may struggle to achieve ideal performance attribute to the domain gap of intrinsic 
characteristics and extrinsic circumstances between land and underwater living.

Ø Salient Instance Segmentation 
(SIS), an emerging and promising 
visual task, aims to segment out 
visually salient objects in a scene 
and distinguish individual salient 
instances, which is beneficial for 
vision tasks such as marine 
resource exploration and 
underwater human-computer 
interaction.



Motivation

Ø On the one hand, there is no general underwater salient image instance 
segmentation dataset to promote training and evaluation of the underwater salient 
instance segmentation models. 

Ø On the other hand, even state-of-the-art SIS models trained on large-scale land-
based datasets coupled with the best underwater image enhancement algorithms 
cannot achieve satisfactory performance in underwater environments.

l To alleviate this issue, we construct the first large-scale underwater salient instance 
segmentation (USIS) dataset, USIS10K, aiming to promote the development of 
salient instance segmentation for underwater tasks. 

l Simultaneously, we first attempt to apply Segment Anything Model (SAM) to 
underwater salient instance segmentation and propose USIS-SAM, aiming to 
improve the segmentation accuracy in complex underwater scenes.



Contributions

a) We construct the first large-scale dataset, USIS10K, for the underwater salient 
instance segmentation task, which contains 10,632 images and pixel-level 
annotations of 7 categories. As far as we know, this is the largest salient instance 
segmentation dataset, and includes Class-Agnostic and Multi-Class labels 
simultaneously.

b) We propose the first underwater salient instance segmentation model, USIS-SAM, 
as far as we know. In USIS-SAM, we design Underwater Adaptive ViT Encoder to 
incorporate underwater visual prompts into network via adapters, and Salient 
Feature Prompter Generator to automatically generate salient prompters, guiding 
an end-to-end segmentation network.

c) Extensive public evaluation criteria and large numbers of experiments verify the 
effectiveness of our USIS10K dataset and USIS-SAM.



USIS10K Dataset 
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Dataset Statistic and Challenges
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Ø Challenge in the number of instance.
In USIS10K dataset, multiple salient instances may exist in a single image. There are 1731 images with more than 3 
salient instances in our dataset, accounting for 16.3% of the total.

Ø Challenges in small or large instances.
In USIS10K dataset, the average size of the salient instances is 34,336 pixels (approximately 185×185 pixels), 
which averaged 10.3% of the image size. There are 3053 salient instances smaller than 1% of the image area, 
(16.0% of the total), while there are 1733 instances larger than 30% of the image area, (9.1% of the total). 

Ø Challenges in channel intensity of underwater images.
Optical images inevitably suffer from color attenuation due to the selective absorption of water at different 
wavelengths. This poses an additional challenge for the network to properly understand and handle the image 
color distortion caused by this attenuation



Dataset Statistic and Challenges
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Ø  Location of Salient Objects (Less central bias).
In the SIS10k dataset, approximately 13.5% of the 
locations have fewer than 1000 instances and 32% 
have fewer than 2,000 instances, while in our dataset, 
only 2.75% of the locations have fewer than 1,000 
instances and 22.5% have fewer than 2,000 instances.

A set of salient maps from our dataset and SIS10K

Ø Color Contrast of Salient Instance.
Saliency is often related to the contrast between 
foreground and background, and it is critical to 
check whether salient instances are easy to detect. 
It can be seen that the global contrast of USIS10K is 
slightly higher than that of SIS10K. In addition, the 
local contrast of USIS10K at salient instances is lower 
than that of SIS10K. This poses a greater challenge in 
accurately segmenting the salient instance masks at 
the network boundary portion.Global/Local Color Contrast  of Salient Instance



USIS-SAM

Figure 1. (a) USIS-SAM framework. The USIS-SAM framework modifies the SAM by adding the Underwater 
Adaptive ViT Encoder and the Salient Feature Prompt Generator. (b) The structure of UA-ViT. In the figure, 
SFFM stands for Salient Feature Fusion Module, CA stands for Channel Adapter.



Underwater Adaptive ViT Encoder

Adapter：
𝑃 = 𝑀𝐿𝑃!"# (𝜎(𝑀𝐿𝑃$%!&$#(𝐹))),

where 𝐹 is the input feature, and 𝑃 is the output prompt for each 
adapter layer. 𝜎	is the activation function.

Channel Adapter：
𝐶 = 𝐹×𝐶𝑜𝑛𝑣"$(𝜎(𝐶𝑜𝑛𝑣'!()(𝑃𝑜𝑜𝑙(𝐹)))),

where 𝐶 is the output feature after channel adapter, 𝐶𝑜𝑛𝑣 is a 
1×1 convolutional layer, and 𝑃𝑜𝑜𝑙 is an average pooling layer.

In USIS-SAM, we design the Underwater Adaptive ViT (UA-ViT) to 
integrate underwater visual prompts into the network via 
adapter and channel adapter. UA-ViT enables a more effective 
utilization of the SAM image encoder in underwater scenarios.



Salient Feature Prompt Generator

Figure 3. Visualize features generated by 
the Salient Feature Prompt Generator. 

Figure 2. The structure of Salient Feature Prompt Generator 
(SFPG). The SFPG module efficiently filters out non-salient noise, 
allowing for robust feature aggregation of salient instances.

The USIS task needs the model to automatically recognize and segment each salient object in underwater 
images. However, SAM requires the user to explicitly provide foreground points, boxes, or texts as prompts to 
guide the model segmentation. Therefore, we design the Salient Feature Prompt Generator to directly predict 
prompts embedding of salient instances, enabling end-to-end performing the USIS task



Experiments

Table 1. Quantitative comparisons with state-of-the-arts on the USIS10K datasets. Urank stands for an 
underwater image enhancement method in UnderwaterRanker (AAAI 2023 oral), SAM+BBox uses inference 
results from Faster RCNN as prompts for prediction, SAM+Mask stands for Mask RCNN networks use SAM 
as backbone. The RSPrompter in the table is the RSPrompter-anchor framework.



Experiments

Figure 4. Qualitative comparison on the USIS10K dataset. Each salient instance is represented by a 
unique color, and the segmented mask is superimposed on the image.



Ablation Study

Table 2. Effectiveness of each component in 
USIS-SAM, replace SFPG means to use Multi-
scale Feature Enhancer Module in 
RSPrompter (TGARS’24) instead of SFPG.

Table 3. Generalization Ability of USIS-SAM. 
Quantitative comparisons with state-of-the-
art methods on SIS10K indicate that USIS-
SAM did not overfit our dataset.

Table 4. Effectiveness of each component in 
Underwater Adaptive ViT Encoder, w/o 
Adapter and w/o CA denote the removal of 
Adapters and Channel Adapter.

Table 5. Effectiveness of each component in 
Salient Feature Prompt Generator, w/o SFFM 
and w/o Multi-Conv denote the removal of 
the salient feature fusion module and multi-
scale convolution module.



Conclusion and Future Work

Ø We have constructed the first general underwater salient image instance 
segmentation dataset with pixel-level annotations, which enables us to 
comprehensively explore the underwater salient instance segmentation task. 

Ø we first attempt to apply Segment Anything (SAM) model to underwater 
salient instance segmentation and propose USIS-SAM, aiming to improve the 
segmentation accuracy in complex underwater scenes. Extensive experiments 
have validated the effectiveness and generalizability of USIS-SAM.

Ø In future work, we plan to extend the USIS datasets to broader and more 
challenging underwater images and underwater videos.



Future work

Perception ：
New attempts in learning based 

methods, such as small samples 

training, un-supervised learning. 

1
Evaluation：
Explore more reasonable, reliable 

and interpretable evaluation 

methods and measures.

2

Application：
Huge space to conduct research on visual 
computing applications, such as segmentation, 
detection, tracking, etc.

3

[TIP’16] [TIP’20] [TIP’21][TIP’23] [SPIC’21] [TCSVT’22]

[ICCV’23]
[ICML’24]
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