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Introduction

¥ Ours: USIS-SAM (Cextra prediction J

> Salient Instance Segmentation

60“-:3%) * gég{igg(%gﬁg)m (§IS), an eme.rging and promising

N CRil ROSRCCTE) 3 visual task, aims to segment out

Ne S ® URank+ QTR (TMM'23) visually salient objects in a scene

e RN and distinguish individual salient

R TR WaterVask instances, which is beneficial for

ol o b . 1y vision tasks such as marine

* ' / resource exploration and

" B underwater human-computer
Alg s AP\ Rank+RDPNet Ours Interaction.

» However, directly transferring conventional SIS methods for land images to underwater scenes
may struggle to achieve ideal performance attribute to the domain gap of intrinsic
characteristics and extrinsic circumstances between land and underwater living.



Motivation

» On the one hand, there is no general underwater salient image instance
segmentation dataset to promote training and evaluation of the underwater salient
instance segmentation models.

» On the other hand, even state-of-the-art SIS models trained on large-scale land-
based datasets coupled with the best underwater image enhancement algorithms
cannot achieve satisfactory performance in underwater environments.

® To alleviate this issue, we construct the first large-scale underwater salient instance
segmentation (USIS) dataset, USIS10K, aiming to promote the development of
salient instance segmentation for underwater tasks.

® Simultaneously, we first attempt to apply Segment Anything Model (SAM) to
underwater salient instance segmentation and propose USIS-SAM, aiming to
improve the segmentation accuracy in complex underwater scenes.



Contributions

a)

b)

We construct the first large-scale dataset, USIS10K, for the underwater salient
instance segmentation task, which contains 10,632 images and pixel-level
annotations of 7 categories. As far as we know, this is the largest salient instance
segmentation dataset, and includes Class-Agnostic and Multi-Class labels
simultaneously.

We propose the first underwater salient instance segmentation model, USIS-SAM,
as far as we know. In USIS-SAM, we design Underwater Adaptive ViT Encoder to
incorporate underwater visual prompts into network via adapters, and Salient
Feature Prompter Generator to automatically generate salient prompters, guiding
an end-to-end segmentation network.

Extensive public evaluation criteria and large numbers of experiments verify the
effectiveness of our USIS10K dataset and USIS-SAM.



USIS10K Dataset

Dataset Year Task Label Number Max
ILSO 2017 SIS X 2,000 8
SOC 2018 SIS v 3,000 8

SISIOK | 2023 SIS X 10,301 9

USIS10K | 2024 USIS v 10,632 9




Dataset Statistic and Challenges
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» Challenge in the number of instance.
In USIS10K dataset, multiple salient instances may exist in a single image. There are 1731 images with more than 3
salient instances in our dataset, accounting for 16.3% of the total.

> Challenges in small or large instances.
In USIS10K dataset, the average size of the salient instances is 34,336 pixels (approximately 185X185 pixels),
which averaged 10.3% of the image size. There are 3053 salient instances smaller than 1% of the image area,
(16.0% of the total), while there are 1733 instances larger than 30% of the image area, (9.1% of the total).

» Challenges in channel intensity of underwater images.
Optical images inevitably suffer from color attenuation due to the selective absorption of water at different
wavelengths. This poses an additional challenge for the network to properly understand and handle the image

color distortion caused by this attenuation 8



Dataset Statistic and Challenges

8000
> Location of Salient Objects (Less central bias).

In the SIS10k dataset, approximately 13.5% of the
locations have fewer than 1000 instances and 32%
have fewer than 2,000 instances, while in our dataset,
only 2.75% of the locations have fewer than 1,000
instances and 22.5% have fewer than 2,000 instances.
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USIS-SAM
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Figure 1. (a) USIS-SAM framework. The USIS-SAM framework modifies the SAM by adding the Underwater
Adaptive ViT Encoder and the Salient Feature Prompt Generator. (b) The structure of UA-VIT. In the figure,
SFFM stands for Salient Feature Fusion Module, CA stands for Channel Adapter.



Underwater Adaptive ViT Encoder

In USIS-SAM, we design the Underwater Adaptive ViT (UA-VIT) to
integrate underwater visual prompts into the network via
adapter and channel adapter. UA-VIiT enables a more effective

utilization of the SAM image encoder in underwater scenarios.

Adapter :
P = MLPyy; (U(MLPprompt(F)))f

adapter layer. o is the activation function.

where F is the input feature, and P is the output prompt for each

~

J

Channel Adapter :
C = FxConvyy(o(Convgygyn (Pool(F)))),

\1><1 convolutional layer, and Pool is an average pooling layer.

where C is the output feature after channel adapter, Conv is a
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Salient Feature Prompt Generator
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Figure 2. The structure of Salient Feature Prompt Generator

(SFPG). The SFPG module efficiently filters out non-salient noise, =~ Ffgure 3. Visualize features generated by
allowing for robust feature aggregation of salient instances. the Salient Feature Prompt Generator.

The USIS task needs the model to automatically recognize and segment each salient object in underwater
images. However, SAM requires the user to explicitly provide foreground points, boxes, or texts as prompts to
guide the model segmentation. Therefore, we design the Salient Feature Prompt Generator to directly predict
prompts embedding of salient instances, enabling end-to-end performing the USIS task



Experiments

Method Epoch Backbone Class-Agnostic Multi-Class
mAP APs;y APy5 | mAP  AP5;y APr;
S4Net (Fan et al., 2019) 60 ResNet-50 32.8  64.1 27.3 239 435 244
RDPNet (Wu et al., 2021) 50 ResNet-50 53.8 77.8 619 | 379 553 42.7
RDPNet (Wu et al., 2021) 50 ResNet-101 | 54.7  78.3 63.0 | 393 559 454
OQTR (Pei et al., 2023) 120 ResNet-50 56.6 793 62.6 19.7 30.6 219
URank+RDPNet (Wu et al., 2021) 50 ResNet-101 | 52.0  80.7 62.0 | 359 525 41.4
URank+OQTR (Pei et al., 2023) 120 ResNet-50 | 49.3 743 56.2 | 20.8 32.1 23.3
WaterMask (Lian et al., 2023) 36 ResNet-50 58.3 80.2 66.5 377 540 425
WaterMask (Lian et al., 2023) 36 ResNet-101 | 59.0  80.6 672 | 38.7 549 432
SAM+BBox (Kirillov et al., 2023) 24 ViT-H 459 659 52.1 264 389 29.0
SAM+Mask (Kirillov et al., 2023) 24 ViT-H 55.1 80.2 62.8 385 563 44.0
RSPrompter (Chen et al., 2023a) 24 ViT-H 58.2 79.9 65.9 40.2 55.3 44.8
URank+RSPrompter (Chen et al., 2023a) 24 ViT-H 506 744 566 | 38.7 554 436
USIS-SAM 24 ViT-H 59.7 81.6 67.7 | 43.1 59.0 485

Table 1. Quantitative comparisons with state-of-the-arts on the USIS10K datasets. Urank stands for an
underwater image enhancement method in UnderwaterRanker (AAAI 2023 oral), SAM+BBox uses inference
results from Faster RCNN as prompts for prediction, SAM+Mask stands for Mask RCNN networks use SAM
as backbone. The RSPrompter in the table is the RSPrompter-anchor framework.



Experiments
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Figure 4. Qualitative comparison on the USIS10K dataset. Each salient instance is represented by a
unique color, and the segmented mask is superimposed on the image.



Ablation Study

Methods mAP APs AP-s

Full Model 43.1 59.0 48.5
w/o UA-VIT | 415 (-1.6) 57.4(-1.6) 47.0(-1.5)
replace SFPG | 42.2 (-0.9) 583 (-0.7) 47.5(-1.0)

Methods mAP AP5 AP75
OQTR (Pei et al., 2023) 67.2 88.1 81.7
USIS-SAM 70.1 89.0 78.2

Table 2. Effectiveness of each component in
USIS-SAM, replace SFPG means to use Multi-
scale  Feature Enhancer Module in
RSPrompter (TGARS’24) instead of SFPG.

Table 3. Generalization Ability of USIS-SAM.
Quantitative comparisons with state-of-the-
art methods on SIS10K indicate that USIS-
SAM did not overfit our dataset.

Methods mAP APr AP

Methods mAP APs5 AP

Full Model 43.1 59.0 48.5
w/o Adapter | 41.7(-1.4) 573 (-1.7) 47.3(-1.2)
w/o CA 42.0(-1.1) 57.7(-1.3) 47.1(-1.4)

Full Model 43.1 59.0 48.5
w/o SFFM 423 (-0.8) 58.5(-0.5) 47.2(-1.3)
w/o Multi-Conv | 42.5 (-0.6) 58.6 (-0.4) 47.7 (-0.8)

Table 4. Effectiveness of each component in
Underwater Adaptive VIiT Encoder, w/o
Adapter and w/o CA denote the removal of
Adapters and Channel Adapter.

Table 5. Effectiveness of each component in
Salient Feature Prompt Generator, w/o SFFM
and w/o Multi-Conv denote the removal of
the salient feature fusion module and multi-
scale convolution module.



Conclusion and Future Work

» We have constructed the first general underwater salient image instance
segmentation dataset with pixel-level annotations, which enables us to
comprehensively explore the underwater salient instance segmentation task.

> we first attempt to apply Segment Anything (SAM) model to underwater
salient instance segmentation and propose USIS-SAM, aiming to improve the
segmentation accuracy in complex underwater scenes. Extensive experiments
have validated the effectiveness and generalizability of USIS-SAM.

> In future work, we plan to extend the USIS datasets to broader and more

challenging underwater images and underwater videos.
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Introduction

» To address the growing demand
for underwater exploration, we
have increasingly focused on
developing underwater visual
tasks, particularly the UIS tasks.

- : : ,
( processing I1mage segmentatlon

tasks with long sequence features

(a) Origial (b) WaterMask  (c) VMamba (d) Ours

> Underwater Instance Segmentation (UIS) and Underwater Salient Instance
Segmentation (USIS) are emerging tasks: UIS aims to segment all instance
objects in underwater scenes with category distinction, while USIS specifically

targets visually salient objects by differentiating prominent instances.
18



Contributions

a) We reveal the limitations of existing vision Mamba in underwater scenes and
propose first Mamba-based underwater instance segmentation model UIS-Mamba,
which improves the vision Mamba's ability to understand the features of
underwater instance objects and provides new insights for Mamba's migration to
underwater tasks.

b) We design Dynamic Tree Scan (DTS) module and Hidden State Weaken (HSW)
module to introduce vision Mamba into underwater scenes. The DTS module allows
the patches to dynamically offset and scale, and the HSW module weakens the
interference of the complex underwater background on the hidden state update.

c) Experiments on the UIIS and USIS10K regarding instance segmentation and salient
instance segmentation show that our proposed UIS-Mamba achieves state-of-the-

art segmentation performance.
19



UIS-Mamba
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Dynamic Tree Scan
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> Adaptive Graph Deformation dynamically adjusts the feeling field to
preserve topology.

» Dynamic Graph Pruning eliminates redundant feature connections.
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Hidden State Weaken
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> Ncut-Based Patch Categorization perform the category determination of
patches through a foreground-background separation Ncut algorithm.

> Hidden State Weaken suppresses the influence of background patches
on hidden state updates
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UIIS Experiment

Table 1: Results on UIIS with our UIS-Mamba.

Method Backbone Params | mAP APsg AP75 | APs APy APp | APy AP, AP,

Mask R-CNN [22] ResNet-50 50M 23.5 42.3 23.7 7.8 193 349 | 443 464 158
WaterMask R-CNN [35] ResNet-50 54M 26.4 43.6 28.8 9.1 21.1 381 | 469 540 18.2
UIS-Mamba(Ours) UIS-Mamba-T 56M 294 46.7 313 | 10.1 225 419 |48.7 564 199
Mask R-CNN [22] ResNet-101 63M 23.4 40.9 253 9.3 198 325 | 43.6 49.0 18.0
Mask Scoring R-CNN [25] ResNet-101 79M 246 419 265 | 84 200 343 | 442 528 16.0
Cascade Mask R-CNN [3] ResNet-101 88M 25.5 42.8 27.8 7.5 20.1 350 | 439 529 223
BMask R-CNN (8] ResNet-101 66M 22.1 36.2 244 5.8 17.5 35.0 | 40.7 50.0 17.7
Point Rend [34] ResNet-101 63M 25.9 43.4 27.6 8.2 20.2 386 | 433 54.1 20.6
R3-CNN [42] ResNet-101 77M 24.9 40.5 27.8 9.7 214 336 | 454 522 20.2
Mask Transfiner [30] ResNet-101 63M 24.6 421 260 | 7.2 194 361 | 43.8 463 19.8
Mask2Former [6] ResNet-101 63M 25.7 38.0 27.7 6.3 189 381 | 41.1 519 23.1
WaterMask R-CNN [35] ResNet-101 67M 27.2 43.7 293 9.0 21.8 389 | 46.3 548 20.9
UIS-Mamba(Ours) UIS-Mamba-S 76 M 304 48.6 33.2 | 10.2 233 42.7 | 494 57.0 23.7
USIS-SAM [36] ViT-H 700M 29.4 45.0 32.3 9.8 22.1 42.0 | 49.3 56.7 21.8
UIS-Mamba(Ours) UIS-Mamba-B 115M 31.2 491 345 | 104 242 435|501 578 254

For UIS-Mamba-T backbone, our method achieves
29.4, 46.7, and 31.3 AP in mAP, AP50, and AP75,
which is 3.0, 3.1, and 2.5 higher than SOTA method
Water Mask R-CNN with ResNet-50 backbone

MAP: Mean Average Precision
AP50: Average Precision at 50% 10U
AP75: Average Precision at 75% IOU
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UIIS Experiment

Table 2: Results on USIS10K with our UIS-Mamba.

Method Backbone Params Class-Agnostic Multi-Class
mAP APsg AP7s mAP APs AP75
S4Net [12] ResNet-50 47M 32.8 64.1 27.3 23.9 43.5 244
RDPNet [438] ResNet-50 49M 53.8 77.8 61.9 37.9 553 42.7
OQTR [41] ResNet-50 50M 56.6 79.3 62.6 19.7 30.6 21.9
WaterMask [35] ResNet-50 54M 58.3 80.2 66.5 37.7 54.0 42.5
UIS-Mamba(Ours) UIS-Mamba-T 56M 62.2 84.0 71.3 42.1 59.6 48.3
RDPNet [48] ResNet-101 66M 54.7 78.3 63.0 39.3 55.9 45.4
WaterMask [35] ResNet-101 67M 59.0 80.6 67.2 38.7 54.9 43.2
UIS-Mamba(Ours) UIS-Mamba-S 76 M 63.1 85.1 72.0 44.5 61.5 51.1
SAM+BBox [31] ViT-H 641M 45.9 65.9 52.1 26.4 38.9 29.0
SAM+Mask [31] ViT-H 641M 55.1 80.2 62.8 38.5 56.3 44.0
RSPrompter [4] ViT-H 632M 58.2 79.9 65.9 40.2 553 44.8
USIS-SAM [36] ViT-H 701M 59.7 81.6 67.7 43.1 59.0 48.5
UIS-Mamba(Ours) UIS-Mamba-B 115M 63.8 86.0 72.8 46.2 63.2 534

Class-agnosticsalient instance segmentation can be essentially understood as foreground
instance segmentation exclusively focusing on salient regions in images.
Multi-class salient instance segmentation can be conceptually considered as a fusion of tasks

from class-independent salient instance segmentation and salient instance class prediction
24



Ablation Study

Table 3: Ablation study of our contributions. Table 4: Ablation study of DTS module.
Mamba DTS HSW Params mAP APsy APys Offsets Scales Weights mAP APs5y APs;5
54M 264 43.6  28.8 27.1 451 293
v 52M 27.1 451 293 v 27.7 456 29.7
v v 55M 289 46.2 309 v 27.5 454 295
v v 53M 282 46.1 30.2 v v 28.4 458 30.1
v v v 56M 294 46.7 313 (74 v v 28,9 46.2 30.9

Table 5: Impact of the hyperparameter ¢.

@ mAP AP5y APy Table 6: Impact of different instance segmentation heads.
0 27.1 45.1 293 Head mAP APsy APj;5; APs APy APp

0.5 27.7 455 29.6
MaskRCNN 283 45.6  30.7 9.6 21.1 393

00 280 o 27 WaterMask 29.4 46.7 31.3 10.1 225 41.9
0.7 28.2 46.1 30.2 aterivias . . . . . .

0.8 27.9 45.7 29.7
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Qualitative Comparison

(a) Original

(c) USIS-SAM  (b) WaterMask

(¢) Ours

Figure 3: Qualitative comparison on the UIIS and USIS10K dataset. Each class of instance in the same image is represented by a
unique color, and the segmented mask is superimposed on the image.
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Conclusion

» This paper propose the first Mamba-based underwater instance
segmentation model, UIS-Mamba, to port Mamba to underwater tasks
through two improved modules to address the problems of
segmentation confusion and semantic ambiguity in challenging
underwater scenes.

» The DTS module allows the graph structure to be dynamically shifted and
scaled to guide the minimum spanning tree and provides dynamic local
sense fields. The HSW module suppresses interference from complex
backgrounds and focuses the information flow of state propagation.

» UIS-Mamba achieves state-of-the-art performance on both the UIIS and
the USIS10K datasets, while keeping the number of parameters and
computational complexity low.

27
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